An
Introduction
to Python

Programming

Author: Ian D Chivers
Date: Tuesday, 25th April, 2023

Naming trivia - Python's name is derived from Monty Python, whom Python's creator
Guido van Rossum obviously had watched. Monty Python references appear in Python code
and culture, and spam and eggs are used instead of the traditional foo and bah used in other
languages. Visit

https://en.wikipedia.org/wiki/Monty Python

for more information.

History
I ended up writing these notes because of hearing about Python, and how good it was for
numeric and scientific computing. Here is a comment about Python from an enthusiast:

e [would recommend the Python route as it is the numerical programming lan-
guage du jour. It competes well with the numerical IDEs like Matlab (with inter-
action and graphics) and also with the traditional compiled languages. Just about
every scientific discipline has a set of Python applications, tools and/or libraries,
many of which are bundled with some of the science-orientated Linux distribu-
tions. As it comes with its own package management, it is very easy for people
to pull down all the libraries they need without too much head-scratching - John
Pelan (Head of Scientific Computing at the Wellcome Centre, University Col-
lege London).

The examples have (in the main) been run on both Windows and Linux.

The original notes were written in 2015. They have been updated several times in response
to comments made by delegates and also as Python has evolved.

December 2017
e Updated to reflect changes that have been made to the multiprocessing library.
e Added a brief coverage of QT Creator.
March 2018, with feedback from Nick and Poppy.
e Semi colons removed amongst other changes.
e Added cartopy example as a replacement for the basemap plots.
April 2018.
e Minor improvements.
e Added C++ and Java programs to the performance comparison chapter.
July 2018.
e Updated to correct Acrobat navigation.
September 2018.
e Added some additional material on Anaconda on Windows.
September 2018.

e Updated the installation details to have more information about how to run some
of the examples.

e Added coverage of Spyder.

e Added some additional matplotlib and cartopy examples.

e Added details of various parts of the Python apis used in the examples.

e Updated chapter 27 to have summary timing figures for several compilers.
e Add a chapter on installing and calling the Nag library.

e Corrected page size issues across the postcript print file and Adobe Acrobat Dis-
tiller.

e Also corrected page tag issues.

Continued:

January 2019.
e Added the Monty Python details.
February 2019.

e (Corrections and updates.

March 2019.
e Updated the version information to bring up to date with the latest Python distri-
butions.

e Added an example summary chapter.
April 2019.
e Added additional examples in the following chapters:
e [/O, csv, internal writes;
e Graphics and matplotlib.
e New examples in the SQL chapter based on the Met Office historic data records.
April 2019.
e Corrected two d numpy arrray example, chapter 6.
e Added OO Met Office example, chapter 10.
e Added notes about several Unix commands in chapter 11.
e Added genfromtxt example, chapter 11.

e Added example in the sql chapter using genfromtxt and numpy arrays that
calulates monthly averages.

May 2019.
e Added two examples to the string chapter.

e Added 4 examples on Pandas working with the Met Office station data to the
Scipy chapter.

e Updated the multiprocessing pool examples to give the overall parallel time in-
cluding pool creation and pool closure figures.

e Updated examples on web site to match latest notes.

e Added details of the Windows subsystem for linux offering from Microsoft. It is
easy to add Python to the Ubuntu distribution.

e Added details of using Microsoft Visual Studio Community Edition for Python
development. Visual Studio is Python aware. There is coverage of Visual Studio
2017 and 2019.

e Added details of Intel Python.
e Added details of Windows Hyper-V and Python.
e Added references and citations for Cartopy and the map data used.

Continued:

September 2019.

e Added two new graphics plots.

e Updated the run time table in chapter 27.
January 2020

e Updated sample numbering. Added extra material on handling Excel stored data
April 2020

e (Corrected blank pages issue.
September 2020

e Updated the timing figures comparing Python to compiled languages.
April 2023

e Updated to bring in line with current systems.

e Corrected some of the source files.

e (Generated updated example summary table.

e Updated the Python source file examples to reflect the current notes contents.

Contents 5

Table of Contents

O Y= Y= 13
1AM 13
L o 111 (] PP 13
PR T O £ PP 14
T4 ASSUMPLIONS .o e et e e e e e e e e s 16
1.5 WED FESOUICES ...ttt e e e e e enannes 16
1.6 Downloading and installing the software................ccccoooeii 16
A4 1T [0S 17
1.71 Windows and anaconda........ccocooooiiiiieiaeeeeee e 17
1.7.1.1 Accessing Anaconda and Python on WIindowsccccoviiiiiiiiinniins 34
1.7.2 Windows - cygwin python VErsioN...........ooociiiiiiiiiiiieee e 36
1.7.3 Windows - Python download...............coooiiiiiiiiiiiiieeeeee e 41
1.74 Windows and Microsoft Visual Studio...........cooovvveiiiiiiiiiiiee e 41
1.7.4.1 Visual Studio Community Edition 2019..........cooiiiiiiiiieee e 43
1.7.5 Windows subsystem for Linux and Python install 44
1.7.6 WiIndows HYper-V mManageroooveeeiiiiiii et s e e e e et e e e e eeees 45
IR T I 1) G 47
1.8.1 Python and OpenSUSE ... 47
1.8.2 Python, openSuSe and an anaconda installation..............cccccoiiiiei e, 47
1.9 Intel Python for Windows, Linux and Mac..............cccooeoeiiiieeiee 47
1.10 Mapping with Python - basemapcccooooiieiiiiiie e 47
1.11 Mapping with Python - Cartopycoooeeeiiiii 48
1.12 Python on line documentation ... 49
1.12.1 Published books and on line electronic manuscriptsccccvevveveiiiiiieiiinnnnnn. 61
1.13 Download and installation summary..........ccccoooiiiii 63
1.13.1 Summary of SYStemMS SEIUPScoviiiiiiii e 63
114 Course DetailSooooeeeieeeee 66
A5 ProbIems. 66
2 An Introduction to Python ... 67
2.1 Example 1 - Hello WOrld ... 67
2.2 Example 2 - Simple text /o using Python style strings.............cccoooeeeeeee. 67
2.3 Example 3 - SImple NUMETIC 1/0uuuiiiieieeeieee e 68
2.4 Running the examples using jupyter gtconsole............ccccoeeiiiiiiiiiiee. 68
P22 R U 1< 0T IR~ o) Yo = SRR 71
2.8 Problems...... . 72
3 Python base types, operators and expressionsc.....ccccceeeeeerreeennnn. 73
3.1 BUI-IN TYPES it 73
3.2 PYthon SYMDOISuuiiiiiiiiiiiiiii e 73
3.2.1 (@ 01=T =1 (o] = T 73
3.2.2 Delimiters and other characters...............ccoooviiiiiieei e 74
3.3 Numeric Types — int, float, compleXcoorriiiiiiiiii e, 74
I 1 (=T = 1 (o] I8/ o1 J PSP 75
3.5 SEQUENCE TYPES . ittt e e e e e e aaaaa 75
3.6 Text Sequence TYPE - St 75
3.7 Binary sequence types - bytes, bytearray, memoryview..............cccccceeeeeen. 76
3.8 Settypes - set, froZENSEtouumiiiii s 76
3.9 Mapping types - diCtcooeeiiiiiiee e 76
3.10 Context ManNAgEr tYPESuuuuiiiiiiiiiiiiiiii e 76
.11 OUNEI EYPES . 76
X Tt 2 e 0] o] 1= o PP 76
4 Arithmetic.......oo e ——— 77
4.1 Example 1 - assignment and diviSion............coooiiiiiiiiiiic e 77
4.2 Example 2 - division with integers............oeeiiiiiiiiii e, 78
4.3 Example 3 - time taken to reach the earth from the Sun. 78
4.4 Example 4 - converting from Fahrenheit to centigrade. 79
4.5 Example 5 - converting from Centigrade to Fahrenheit. 79
4.6 Example 6 - numbers getting too large - overflowcccooe 79

6 Contents

4.7 Example 7 - numbers getting too small - underflowc 79
4.8 Example 8 - subtraction of two similar values............cccccciiiiiiiiiiii, 80
4.9 Example 9 - summation.........ooooiiiiiiiiii e 80
4.10 Absolute and relative errorscoeie i 81
S T = (o] o] [T 1 PSP 81
412 Bibliography ... 82
5 Arrays using the array module............ccooiiiiiimicccc s 84
5.1 Array MethOds ... 84
5.2 Arrray size known at compile timeccccoiiiiiiiiiiiiiiis 87
5.2.1 Example 1 - array and conventional for loop syntax............cccccceveeiiiiiiiiiiinnen. 87
5.2.2 Example 2 - using the len function to determine the size of array 88
5.3 Array size Known at run time.............uuuuiiiiiiiiiiiiiii s 88
5.3.1 Example 3 - reading in the array Size..........ooooiiiiiiiieiiiiiieee e 88
5.4 SUMIMAIY ..ttt e et e e e e e e e e e e et s e e e e eaaaeeenees 89
5.5 PrODIBMS ... 89
6 Arrays using the Numpy module.............coiccccninrrr s 91
6.1 DOoCUMENTALION 94
O O (== ([g To =Ty = T 95
6.3 Simple 1 and 2 d array eXxamplesccooeeeeiiiiiiiiiiiiie e 96
6.3.1 Example 1 - simple rainfall example............ccooooviiiiiiiiieieeeee s 96
6.3.2 Example 2 - variant of one using len intrinsic function...............cccccccoiiiiinnen. 96
6.3.3 Example 3 - setting the size atruntime..............oooiiiiiiiii, 96
6.3.4 Example 4 - two d array using numpy.zeros method............cccccieeiiiiieiieeennnn, 97
6.3.5 Example 5 - two d array using numpy.array() methodcoovvvviiiiiiiiiinnnnn, 97
6.3.6 Example 6 - two d array and the numpy.sum() method............cccceevvvvvviivrnnnnnns 97
6.4 Simple 1 and 2 d array SliCiNg.........ouuuiiiiiiiiiieecce e 100
6.4.1 Example 7 - simple one d sliCing.........coooo i 100
6.4.2 Example 8 - tWO d SlICING.......ccoiiiiiiiiiiiiiie e 100
6.4.3 Example 9 - arithmetic and SliCING.........cooiiiiiiiii 101
6.5 Miscellaneous examples: aggregate, reshape, copies and views.............. 102
6.5.1 Example 10 - AGgregate USAQJEuueeiiiiiiiiiiiiiiei e 102
6.5.2 Example 11 - Shape manipulation..............ccc i 102
6.5.3 Example 12 - COPIES OF VIBWSuuiiiiiiiiiee ettt 103
6.6 Numpy documentation............cooiiiiiiiiiiie e 104
B.7 ProbIEMS ... 104
7 Text in Python: Strings ... 105
71 T] (o o 18 [1o] o IO 105
7.2 StriNG MethOASuuiiiiiiiii e 105
7.3 String example 1 - initialisation, len and find methods.......................co... 110
7.4 String example 2 - concatenation and split method..........c.cccccceeiiiiiiiinnn, 110
7.5 String example 3 - split variant..........cccoooiiiiiii e 112
7.6 String example 4 - reading from an external file..............cccccvveieiii i, 112
7.7 String example 5 - reading data from a file and calculating sum and average
=111 2= 1Y Z= 1 LU =S PP 115
7.8 String example 6 - simple variant of the previous example using the .format
option 117

7.9 Character data in Python..........cooo e 118
7.10 String example 7 - the ASCII character setccccccis 118
7488 I B U T Yo [PPSR 119
7.12 String example 8 - Unicode characters.............ccccuvuiiiiiiiiiiiiiiis 120
7.13 Example 9 - another unicode example............cccciiiiiiiiiiiiiiiiicie e 121
4% S o 0] o] 1= o OSSPSR 123
8 Control Structures - compound statements.............cccevvviiiiiiiiiiiinnn, 125
8.1 Compound StatemMENtS...........uuuumiiiiiiii e 125
8.2 Theif statement.........oooi e 126
8.3 The while statement 126
8.4 The for statement ... 126
8.5 The try statement ... 127

[QU L (I G s g N (o N o e BN o))

MOORWN=O

DSOS AN A 300000000000V OOOOOOOOOOODO0W0WOWOD 0O MI®I 0000 00MMP®

SRR 00000000 NN L LL LALLM OO NNNNNNNNNYoo WS

Contents 7

The with statement ... 129
The pass statement...........ooooiii e 130
Example 1 - the if statement ... 130
Example 2 - the while statement.............cccooiiiiii 131
Example 3 - the for loop With a@rrayscccoooeeeiiiiiiiicii e 131
Example 4 - the for loop with lists and enumerateccoeeeiie. 132
Example 5 - the forin statement.............ccccooiiiii i, 133
Example 6 - try and eXCeptlcooo i 133
Additional material...........ooooiiiiii 133
L 0] o] (=0 ¢ 1 SRR 133
BIblIOGraphyccovii i 135
B 3 o7 A o 4 =S 136
Example 1 - a bigger function ... 136
Example 2 - a swap funClioNcccoooeiiiiiiiiiie e, 137
Example 3 - another SWapccooooiiiiiiiii e 137
Example 4 - yet another swapcccooooiiiiiii 138
Example 5 - recursive funClionSovuiiiiiiiiiiiicc e 138
Example 6 - simple factorial variant, reading the value in........................ 138
Intrinsic maths functions................cc

math — Mathematical TUNCHIONS..........iieeeeeeee e

1

1.1 Number-theoretic and representation functions

1.2 Power and logarithmic functions

1.3 Trigonometric FUNCHONSoooiiiii e

1.4 ANQGUIAE CONVEISION ...t e ettt e e e e e e e e e e e e e aaaes

1.5 Hyperbolic fFUNCLIONS ...

1.6 SpecCial fUNCHIONSvviiiiiiiiee e

1.7 CONSIANTS i

Example 7 - testing out the maths functions.............cccoooiiiiiiiiiice 143
Example 8 - math module sin function.............ccccciiiii 145

0 Example 9 - math module using NUMPY arraysccccevveieeveeiineeeeennnnnnn. 146
1 Example 10 - math module using a pi shortcutc.ccoooviiiiiiiiiinn, 146
2 Fibonacci implementations ... 147
3 Example 11 - Using generators..........cooiiiiii 148
4 Example 12 - Herativeccoooo oo 148
5 Example 13 - RECUISIVEiiiiiiiieeeee e 148
6 Functional programming in Python..........ccco 148
7 Example 14 - generating prime NUMbErs ..o 149
8 Example 15 - list and lambda usage...........ccoovvviviiiiiiiiiiiceecce e 149
9 Example 16 - functional exampleccoooviiiiiiiiiiieeceeee e 150
0 Example 17 - functional exampleccoooviiiiiiiiiii e, 151
1 Example 18 - functional example variant using the array module.............. 152
2 Example 19 - functional variant using the numpy module 152
3 ProObIEMS ... eeaeees 153
Object oriented programming and classes in Python...................... 154
1 Example 1 - base shape Classccoooooiiiiiiiiiiiii e 154
.2 Example 2 - variation using modulescccoooiiiiiiiiiiiiiii e, 155
.3 Example 3 - a circle derived Classccccoviiiiiiiiiiii e, 156
4 Example 4 - test program for the shape and circle classes....................... 157
.5 Example 5 - polymorphism and dynamic binding.............ccccceoviiiiiiiiiininnnnn. 158
.6 Example 6 - data structuring using the Met Office data................c........... 159
T PIODIEMS .. 161
O P 162
.1 Example 1 - reading from a file using substrings...........cccccoooviiiiiiiiiiinnnnnn. 162
.2 Example 2 - reading the same file using the split() method 164
3 Example 3 -internet file readouoiiiiiiiiiiiii e 165
4 Example 4 - variation on the internet file read where we save the file...... 166
5 Example 5 - reading all of the station data files with timing 167
6

Example 6 - Writing to a set of files names generated within Python 170

8 Contents

11.7 Example 7 - Copying a file and replacing missing values 170
11.8 Example 8 - creating an SQL file ... 170
11.9 Example 9 - Creating a csvfile ... 171
11.10 Example 10 - CSV files and the csv modulecooeviiiiiiiiiiiiieiiinn, 172
11.11 Example 11 - CSV usage and data extraction..........................oco 174
11.12 Example 12 - reading a met office file using the csv module..................... 175
11.13 Example 13 - reading data using the genfromtxt method.......................... 176
11.14 Example 14 - Writing @ CSV file........coooiiiiie e, 178
11.15 Example 15 - write large array as text file, element by element, with timing
179
11.16 Example 16 - write large array as binary file , element by element, with tim-
ing 180
11.17 Example 17 - write large array as binary file , whole array, with timing....181
11.18 Example 18 - listing subdirectories............cccoooei 182
11.19 Example 19 - listing all Python filescco 182
11.20 Background i/o technical information...............ccccc 183
11.21 Text 1O ..
11.22 BiNAry 1O .o
11.23 RaAW /O
11.24 PerfOrmanCeooooiiiiii e
11.24.1 BINAY 1O oot e et e e e e e eeaaa s
11.24.2 TEXE /Ot e et e e e e e e e e e aaa s
11.24.3 Multi-threading
11.24.4 REENIMTANCY .coiiiiiiiiiiiiiiiieeee eeeeeas
11.25 Problems..... e
12 An Introduction to Algorithms and the Big O notation.................... 185
12.1 Basic bacKgroUNdoiiiiiiiiiiie e 185
12.1.1 Brief explanation................cc 186
12.2 Quicksort and insertion sort comparisonccccoeeeeiiiiei 187
12.3 Basic array and linked list performancecccooviiiiiiiiiececee, 187
12.4 Bibliographycooeeiiiii e 187
12.5 Problems.... . 188
13 Sequence types, Iterators and Lists......cccccceeeeciiiiiiiiiissecccceeccccenee 189
13,1 Herator tYPeS. ..o ———— 189
13.2 Example 1 - Simple iterator usage..........ooovvviiiiiiiiiiiiieeee e, 189
13.3 SEQUENCE LYPES ...t e e 190
13.3.1 Common Sequence OPerationNS..........c.ooeevviiiieiiieeiieeeiiierieeiierrirrrerrr i ——————— 190
13.3.2 Immutable Sequence TYPESccooeiiiiiiiiiiiii e 191
13.3.3 Mutable SEqUENCE TYPES ...oooeiiiiiiieeeeee e e e 191
1314 LiStS oo 192
13.5 Example 2 - list type initialisation and simple for in statement 193
13.6 Example 3 - list type and various sequence methodsccceeevvvnnnnnnn. 193
13.7 Example 4 - list assignment versus copy() methodccce. 194
13.8 List COMPreNeNSIONS......cooi i e 195
13.9 Example 5 - simple list comprehension...........cccoooeviiiiiiiiiiieiieeeeee, 195
13.10 Example 6 - more list comprehensionscccoeeevviiiiiiiiiiiiieeeeeee e, 196
13.11 Example 7 - more list comprehensionsccccovvvviiiiiiiiiiiic e, 196
13.12 Example 8 - even more list comprehensions..........cccccoovvviiiiiiiiiiiiiieeneennnn, 197
1343 TUPIES . 197
13.14 Example 9 - simple tuple usage.........coovieviiiiiiiiii e, 198
S TR T = T = PSR 199
13.16 Example 10 - simple range usage. ..o 199
1317 ProbIems.... . 199
3R 1= A 7 o L= 200
T4 T SOl Ty PES it ———— 200
14.2 Example 1 - simple set USage.......ccuuiiiiiiiiiiiiiic e 202
14.3 Example 2 - simple dictionaryccoooiviiiiiiiiee e 203

T4 .4 PrOD OIS . e 204

Contents 9

ST E=T o 1L Te 4 o 1= 205
15.1 MapPINg tYPES ... ————— 205
15.2 Example 1 - simple dict UuSagecooiiiiiiiiiiiiii e, 205
15.3 Example 2 - diCt VIEW USAQEccovviiiiiiiiiiie e 205
154 Problems.... .o 206
16 Operator overloading..........cccoccuummmmmmmmeeieee e 207
16.1 INtrOUCHION ... e e 207
16.2 Example 1 - simple operator overloading.........ccccooovvvveiiiiiiiiiiiieeeeeeen, 207
16.3 ProbDIEmMS. ... 208
17 Decimals, fractions, random numbersccceviireiiiiieci e eeees 209
% TR 1o T ¥ T3 1T o U 209
17.2 The Decimal MOdUIE...........cooriiiiiiiii e 209
17.3 Example 1 - using getcontext()oooovrrrriiiii 210
17.4 Function availability ... 210
17.5 Example 2 - values for the maths constants e and pi.............cccoevvveiinnnnnnn. 212
17.6 Example 3 - summation using float and decimal 213
17.7 The Fraction module............ooooiiiiii 214
17.8 Example 4 - simple fraction usage..........cccovvvviiiiiiiiiieeeee e 214
17.9 The Random mMoOdUIEoooiiiiiiiii e 215
17.10 Example 5 - simple random USAge............uoieiiiiiiiiiiiiiiice e 216
17171 Problems.... . 217
18 Databases and sqlitecooeeeeeeccciiiiirrr 218
18.1 Introduction to database management systems................cccc. 218
18.2 SQL based systems and Python...............cccc 218
18.2.1 MiCroSOft SQL SEIVETeeiiiiiieiii e 218
18.2.2 DB API 2.0 DIVEIS ..o 218
18.3 SQLItE ..o 220
18.4 On line documentation at W3 Schools...............cccoo 221
18.5 SQL €XamPIESccooeeiieeeeeeeeee e 221
18.5.1 Example 1 - Database creationocoooiiiiiiiiiiicc e, 222
18.5.2 Example 2 - Table creation.............oooo 222
18.5.3 Example 3 - loading the earthgk table...................cc 226
18.5.4 Example 4 - loading the regions table.............cccoi 227
18.5.5 Example 5 - loading the tsunami table ... 228
18.5.6 Example 6 - Querying the tables ... 228
18.6 Using SQLite from the command linecc 228
18.7 Creating a database of the Met Office data..............ccccviiiii i, 228
18.7.1 Example 7 - creating the database...........cccovvvieii i 228
18.7.2 Example 8 - creating a table for one of the sites..................cco 229
18.7.3 Example 9 - loading data into the table...........ccccoooriiirii e, 229
18.7.4 Example 10 - simple table QUErYccoie i 230
18.7.5 Example 11 - computing averages ... 230

18.7.6 Example 12 - Finding the wettest month and displaying the year, month and
rainfall 231

18.7.7 Example 13 - Finding the wettest months and displaying the year, month and
rainfall 232

18.8 Example 14 - doing monthly average calculations using the genfromtxt ex-

ample in the O Chapter ... e 232
18.9 Problems.. ... 234
19 Regular expressions and pattern matchingccooimiiiicccciiinnnn. 243
19.1 MetacharacCters ... 244
19.2 Example 1 - UK poSt COAESooviiniiiiiiiiiieieee e 244
19.3 ProbIemS... . 245
19.4 Bibliography ... 245
20 Built in eXCePltioNsScccei i e e e nn e 247
20.1 Exception hierarChy ... 247
20.2 ProbIems..... .. e eeanee 249

21 Concurrent execution - threading..........cccccii, 250

10 Contents
211 Thread based parallelism - the threading package...............ccccceiinnn. 250
21.2 Example 1 - Serial SOIUtioNoooviiiiiiiiie e 250
21.3 Example 2 - Multi-threaded solUtion...........c.ooeiiiiiiiiiiiiic e, 252
214 Problems....... e 253
22 Concurrent execution - multi processing.....cccccccceeeeeeiiiiirrreeeeccnnnnnens 255
221 INrOAUCTION ... e e e e e ettt e e e e e e e eeeenees 255
22.2 Process based parallelism - the multiprocessing package 255
22.3 Contexts and start methodsy........oouuuiiiiiii e 255
22.4 Example 1 - Simple multi-processing on a 6 core system..............c.......... 256
22.5 Example 2 - Simple variant for an 8 core system..........ccccccieiiiieiiiiieeenns 258
22.6 Differences between the tWo Versioncooiiiiiiiiiiiiiieeicce e 260
22.7 SAMPIE TUNS ..o e e e e e e e e e ettt a e e e e e e e e eeeassnn s aeeeeeeeenennes 260
22.8 Summary timing table.............cco 262
22.9 Problems. ... 263
2 38 1 U Yo L1 1= 264
122 T IR [0 oo [T 1T o PSR 264
23.2 Introduction t0 MOAUIESccoiiiiiiiiiee e 270
23.3 Example 1 - simple module USAgeccceviiieiiiiiiiiiie e 270
23.4 MOre ON MOAUIES.......ooviiiiii e e e e et e e e e e e e eeeenees 271
23.4.1 N O . e 272
23.5 Executing modules as SCrPLScoooviiiiiiiii 272
23.6 The Module Search Path...........cccooi i 272
23.6.1 N O . 272
23.7 “Compiled” PYython fil€Sccoiiiimiiiiiie e 273
23.8 Standard MOAUIES.........coooiiiiiii 273
23.9 The dir() FUNCHONcoooiiii e 274
23.10 PACKAGES ...evvuiiii ettt eeeaaaenae 276
23.11 Importing * From a Package ... 277
23.12 Intra-package ReferenCes ..o 278
23.13 Packages in Multiple DireCtories ... 279
2314 SUMIMAIY i 279
2315 ProbIEmMS....c e 279
P2 35T o3| V=1 g Lo I o= 4 e F- T3 280
241 INTrOAUCTION ... e e e e e e et e e e e e e e e eeeenees 280
24.2 DoCUMENTALIONcciiieei e eeanaes 280
24.3 TUIOMIAIS ..o 280
244 Reference materialcooiiiiiiiiiiiiiie e 281
P2 T = 1 o = 1 PRSPPI 281
24.51 Example 1 - Basic Pandas SYNtaXccccooiiiiiiiiiiiiiieeeeiiiieeee e 283
24.5.2 Example 2 - Calculating overall averagesccccceveeeeiiiiiiiieieiee e 284
2453 Example 3 - Calculating minimum and maximum values...................ccccoeee. 285
24.5.4 Example 4 - Using the groupby methodcoooiiiiiiiiiiii e, 286
24,6 SUMMAIY .ooiiiiiiii it e ettt e e e e e e e e e e e b b e e e e e e e eeeesssaa e aeeeaeeeennsnns 289
247 Problems...... . e 289
25 Windows programming in Pythonccccccinccsniiciiie 290
25.1 Introduction to Windows programmingccoooveiiiiiiiiiiieeeeeeee 290
25.2 TKINEI ..o 290
25.3 Example 1 - simple test program included with Tkinter distribution........... 290
25.4 Example 2 - Hello world Version 1oouveiiiiiiiiiiiiiiieeeeeeee e, 291
25.5 Example 3 - Hello world variant 1cccoooiiiiiiii e, 292
25.6 Example 4 - Hello world variant 2ccooooiiiiiiiiie e, 293
25.7 Example 5 - Hello world Version 2co.oiiiiiiiiiiiiiiiei e, 293
25.8 Example 6 - Hello world version 3 ..., 294
25.9 The remaining €XampPIlesccoiiiiiiiiiiiiie e eeeeeeenees 296
25.10 Example 7 - simple button example ... 296
25.11 Example 8 - Button and message exampleccccooeeeviiieiiiiiiiiieeeeeeeeeenes 297
25.12 Example 9 - Button, message and entry exampleccccee 298
25.13 Example 10 - Button, entry and text widget example 300

Contents 11

25.14 Tkinter on line examples and reSOUICESuuuiiiiiieeeiiieiiiiieee e 301
25.15 Other OPLIONS ...ttt e e e e e e ettt e e e e e e eeeeeenne 302
D24 70 o Tt B O B I 7 = | o 302
25.16 ProbIems........ e 303
26 Graphlcs plotting in Python using matplotlibcccccccoiimiiiiinnnenn. 304

Graphics plotting with matplotlib............ccccoiiii . 304
26 2 The jupyter gtconsole on WINdOWScoouiuiiiiiiiiiiiic e 305
26.3 Example 1 - Simple trigonometric plot ... 307
26.4 Example 2 - Enhanced trigonometric plotcooiiiiiiiiiiii e 316
26.5 Example 3 - adding a legend, matplotlib defaultscccccccceeiiiii. 317
26.6 Example 4 - adding a legend with manual positioning...............ccccoeeeeeen. 318
26.7 Example 5 - Bar charts.........coooiiiiiii e 319
26.8 Example 6 - bar chart with standard deviations...............ccccceeeeiiiiiiiininnnnn. 321
26.9 Example 7 - bar chart with 4 frequeNCIesccccoveveiiiiiiiiiiiiiiiee e, 322
26.10 Example 8 - bar chart with 10 frequenciesccevvviiiiiiiiiiii e, 325
26.11 Example 9 - Mapping with Python 2.x and basemap........cc.....ccccceeiverennnnn. 328
26.12 Mapping with Python 3 and Cartopyccooevuiiiiiiiiiieeiiecee e, 333
26.12.1 Example 10 - tsunami plot using Cartopyccoveurviiiiiiiiiieiee e, 334
26.12.2 Example 11 - shifting the center of the map ..o, 341
26.12.3 Example 12 - mapping using UK postCOdescccooiiiiiiiiiiiiiiiiieiieeeeeeeeeeee, 345
26.13 BibliOGraphy ... eaaeae 349
26. 131 PYINON (oo 349
P I B O T (o] o)V PPPRPPR 349
26.13.3 MaApP data coooeeiiiiiiiieeeee s 349
26.13.4 UNEP ..o 349
26.14 Problems. ... 349
27 Python performance versus other programming languages 351
271 INTrOAUCHION ... e e e e e e et e e e e e e e eeeeenees 351
27.2 Example 1 - Python SOlUtion ... 351
27.3 Example 2 - Fortran SOIUtIONoouviiiiiie e 352
27.4 Example 3 - CH+ SOIULIONccoiiiiiiiiiee e 353
27.5 Example 4 - Java SOIUtiONooooiiiiiiiii e 355
27.8 SUMIMAIY oo 356
27.7 Problems ... 357
28 Calling the Nag library from Python........cccccccciiiiiiiiiiiiiiicccceserccs, 358
28.1 INrOAUCHION ... e e e e et e e e e e e e eeeeenees 358
28.2 Example 1 - testing the Nag library callscccco 359
28.3 Example 2 - testing the Python random number generators 360
28.4 Example 3 - Python native timing...........cccooi 360
28.5 Example 4 - Nag timing.......cccooeiiiiiii 362
28.6 Problems ... 364
29 Functional programming background..........cccceemeiiiiiiiiiniinnnnecceenneens 365
291 INrOAUCHION ... e e e e e et e e e e e e e e eeeenees 365
29.2 BaCKgrOUNG......ccooiiiiiii i 365
20.3 HiSIOrY ..o 366
DA B S O] o To7=Y o £ REPPPRRR 367
29.4.1 First-class and higher-order functionsccccuiiiiiiiiiii 367
29.4.2 Pure fuNCionNs ... 367
2943 RECUISION ..ttt e e e e e e e e e e e e e e e nnneee s 368
2944 Strict versus non-strict evaluation.............ccccceeei i 368
29.4.5 TYPE SYSIEIMS .. 369
29.4.6 Referential TransparenCy ... 369
2947 Functional programming in non-functional languages............cccccccceeeiiiiinnnnee. 369
29.5 Comparison to imperative programmingccceeeeiieiiiiieeeeeeeeee e 370
29.5.1 SIMUIALING STALE.....cei i 370
29.5.2 EffiCIENCY ISSUES ...t 371
29.5.3 COAING SEYIES ...t 371
29.5.3.1 Version 1 — With Generatorsoovvvviiiiiiiiiiieiieeeeeeeeaeeees 371
29.5.3.2 Version 2 — Herative ... 372

12 Contents

29533 Version 3 — RECUISIVEooiiiiiiiee e 372
29.5.34 HASKEIL ... e e ns 372
29.5.3.5 EFlANG e 372
29.5.3.6 BT et e e e e e e e e e e aaaaaans 373
29.5.3.7 [T o J PRSPPI 373
29.5.3.8 DD e e e e e e e e e — e e e e e e e e a e aaaaaans 373
29.5.3.9 R et e e et r e e e e e e e eeaaae s 374
29.6 USE IN INAUSTIY ...ooiei et eaaans 374
29.7 IN €AUCALION ...t et eeenae 375
30 SQL background ... 376
110 0 ST T o =YY (o | o 11 o 376
30.1.1 HIS O Y e 377
30.1.2 SQL online documentation.............cooviiiiiiiiiiiiiiiiieeeeeeeee - 378
30.1.3 DS e 378
30.1.4 1] €= PP PPERRR 378
30.1.5 Language elemMEeNntS.......couuuuii i 378
30.1.6 OPEIALONS. ... ————————— 379
30.1.7 (O TH LT 4T PO RSERRR 380
30.1.8 SUDQUETIES ...t aaraaaaenane 382
30.1.9 INHNE VIBW .. 382
30.1.10 Null or three-valued 10giC (VL) ...ccoiiiiiiiiiieeieee e 382
30.1.11 Data manipulationoooiiiiiiiii e 384
30.1.12 Transaction CONTIOIScoiiiiiiiieieiie et ennennnes 384
30.1.13 Data definitionoooiiiiii e ———————- 385
KT I S B = = I 4 o= OO PPPRPP 386
30.1.14.1 Character StNGSueeeiiiieee e 386
30.1.14.2 Bt SINGS e 386
30.1.14.3 NUMDEIS ...t e e e e e e e e e ae s 386
30.1.14.4 Temporal (date/time) ... 386
30.1.15 Data CONIIOLottt eeenennnes 387
30.1.16 Procedural eXtENSIONS.........ooiiiiiiiiiieeeieee et 387
30.1.17 Interoperability and standardizationcccccoiiiiiiiiiiiiiiie s 388
30.1.18 AREINAtiVES ... 391
30.1.19 Distributed SQL ProCESSING ...eeeeiiiiiiiiiiiiiiieie et 392
30.1.20 S @IS0 ... et ———— 392
K10 7 O o] (=S O P PPPRRP 392
30.2 My BibliOGraphyeeeiiii e 395
31 EXxample SUMMArYccceeiiiiiiiiiiiirrreesss s s smsssssses 397
X 20 0t B 01 Yo [[1o ISP 397

K I O g P=T o) (Y gl g e) (=3RS 402

Overview 13

‘The first thing we do, let’s kill all the language lawyers.’
Henry VI, part II

1 Overview

1.1 Aims

The aim of the notes is to provide an introduction to the Python language. The following is
taken from the Python wiki.

e Python is a great object-oriented, interpreted, and interactive programming lan-
guage. It is often compared (favourably of course) to Lisp, Tcl, Perl, Ruby, C#,
Visual Basic, Visual Fox Pro, Scheme or Java... and it's much more fun.

e Python combines remarkable power with very clear syntax. It has modules,
classes, exceptions, very high level dynamic data types, and dynamic typing.
There are interfaces to many system calls and libraries, as well as. New built-in
modules are easily written in C or C++ (or other languages, depending on the
chosen). Python is also usable as an extension language for that need
easy-to-use scripting or automation interfaces.

The main Python site is.
https://www.python.org
The [downloads] tab has details of the versions that are available.
https://www.python.org/downloads//
and the [documentation] tab has details of the documentation.
https://docs.python.org/3
The [faq] tab
https://docs.python.org/3/fag/index.html
has the following entries

General Python

Programming

Design and history

Library and extension

Extending/Embedding

Python on Windows

Graphical User Interface

Why is Python installed on my computer

These sites provide a really good staring point, with the benefit that they don't cost anything
except your time.

1.2 History
Here is the Wikipedia entry.

Python was conceived in the late 1980s, and its implementation was started in December
1989 by Guido van Rossum at CWI in the Netherlands as a successor to the ABC language
(itself inspired by SETL) capable of exception handling and interfacing with the Amoeba

Ian D Chivers Chapter 1

14 Overview

operating system. Van Rossum is Python's principal author, and his continuing central role
in deciding the direction of Python is reflected in the title given to him by the Python com-
munity, (benevolent dictator for life - BDFL).
Here is some background taken from the Python site.

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC
group at CWI, and from working with this group I had learned a lot about language
design. This is the origin of many Python features, including the use of indentation
for statement grouping and the inclusion of very-high-level data types (although the
details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its fea-
tures. It was impossible to extend the ABC language (or its implementation) to rem-
edy my complaints — in fact its lack of extensibility was one of its biggest problems.
I had some experience with using Modula-2+ and talked with the designers of Mod-
ula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and seman-
tics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We
needed a better way to do system administration than by writing either C programs
or Bourne shell scripts, since Amoeba had its own system call interface which
wasn’t easily accessible from the Bourne shell. My experience with error handling
in Amoeba made me acutely aware of the importance of exceptions as a program-
ming language feature.

It occurred to me that a scripting language with a syntax like ABC but with access
to the Amoeba system calls would fill the need. I realized that it would be foolish to
write an Amoeba-specific language, so I decided that I needed a language that was
generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to
give it a try. During the next year, while still mostly working on it in my own time,
Python was used in the Amoeba project with increasing success, and the feedback
from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to
USENET. The rest is in the Misc/HISTORY file

Python 2.0 was released on 16 October 2000 and had many major new features, including a
cycle-detecting garbage collector and support for Unicode. With this release the develop-
ment process was changed and became more transparent and community-backed.

Python 3.0 (also called Python 3000 or py3k), a major, backwards-incompatible release,
was released on 3 December 2008[31] after a long period of testing. Many of its major fea-
tures have been backported to the backwards-compatible Python 2.6 and 2.7.

1.3 Use
This is taken from the wikipedia entry. Numbers in [] brackets refer to wikipedia references.
e Main article: List of Python software

e Since 2003, Python has consistently ranked in the top ten most popular program-
ming languages as measured by the TIOBE Programming Community Index. As
of September 2015, it is in the fifth position.[91] It was ranked as Programming
Language of the Year for the year 2007 and 2010.[19] It is the third most popu-

Chapter 1 Ian D Chivers

Overview 15

lar language whose grammatical syntax is not predominantly based on C, e.g.
C++, Objective-C (note, C# and Java only have partial syntactic similarity to C,
such as the use of curly braces, and are closer in similarity to each other than C).

An empirical study found scripting languages (such as Python) more productive
than conventional languages (such as C and Java) for a programming problem
involving string manipulation and search in a dictionary. Memory consumption
was often "better than Java and not much worse than C or C++".[92]

Large organizations that make use of Python include Google,[93] Yahoo!,[94]
CERN,[95] NASA,[96] and some smaller ones like ILM,[97] and ITA.[98]

Python can serve as a scripting language for web applications, e.g., via
mod_wsgi for the Apache web server.[99] With Web Server Gateway Interface,
a standard API has evolved to facilitate these applications. Web application
frameworks like Django, Pylons, Pyramid, TurboGears, web2py, Tornado, Flask,
Bottle and Zope support developers in the design and maintenance of complex
applications. Pyjamas and IronPython can be used to develop the client-side of
Ajax-based applications. SQLAlchemy can be used as data mapper to a rela-
tional database. Twisted is a framework to program communications between
computers, and is used (for example) by Dropbox.

Libraries like NumPy, SciPy and Matplotlib allow the effective use of Python in
scientific computing,[100][101] with specialized libraries such as BioPython and
Astropy providing domain-specific functionality. Sage is a mathematical soft-
ware with a "notebook" programmable in Python: its library covers many aspects
of mathematics, including algebra, combinatorics, numerical mathematics, num-
ber theory, and calculus.

Python has been successfully embedded in a number of software products as a
scripting language, including in finite element method software such as Abaqus,
3D parametric modeler like FreeCAD, 3D animation packages such as 3ds Max,
Blender, Cinema 4D, Lightwave, Houdini, Maya, modo, MotionBuilder,
Softimage, the visual effects compositor Nuke, 2D imaging programs like
GIMP,[102] Inkscape, Scribus and Paint Shop Pro,[103] and musical notation
program or scorewriter capella. GNU Debugger uses Python as a pretty printer
to show complex structures such as C++ containers. Esri promotes Python as the
best choice for writing scripts in ArcGIS.[104] It has also been used in several
video games,[105][106] and has been adopted as first of the three available pro-
gramming languages in Google App Engine, the other two being Java and
Go.[107]

Python has also been used in artificial intelligence tasks.[108][109][110][111] As
a scripting language with module architecture, simple syntax and rich text pro-
cessing tools, Python is often used for natural language processing tasks.[112]

Many operating systems include Python as a standard component; the language
ships with most Linux distributions, AmigaOS 4, FreeBSD, NetBSD, OpenBSD
and OS X, and can be used from the terminal. A number of Linux distributions
use installers written in Python: Ubuntu uses the Ubiquity installer, while Red
Hat Linux and Fedora use the Anaconda installer. Gentoo Linux uses Python in
its package management system, Portage.

Ian D Chivers Chapter 1

16 Overview

e Python has also seen extensive use in the information security industry, includ-
ing in exploit development.[113][114]

e Most of the Sugar software for the One Laptop per Child XO, now developed at
Sugar Labs, is written in Python.[115]

e The Raspberry Pi single-board computer project has adopted Python as its prin-
cipal user programming language.

e LibreOffice includes Python and intends to replace Java with Python. Python
Scripting Provider is a core feature[116] since Version 4.0 from 7 February
2013.

We use Python 3 in these notes.

14 Assumptions

It is assumed that the reader is familiar with using a computer system, in particular using an
editor and working with files.

1.5 Web resources
A copy of these notes can be found at:
http://www.rhymneyconsulting.co.uk/python/

The main Python site is
https://www.python.org/

which is where you should start.

The Anaconda version of Python is available from a number of sites including:
https://www.anaconda.com/

and
https://repo.continuum.io/

1.6 Downloading and installing the software

I used openSuSe Linux and Windows implementations of Python writing these notes. There
are a number of options available to do Python programming on Windows and Linux, and
these are given below

e download and install anaconda from the anaconda site for Windows;

e download and install anaconda from the anaconda site for Linux;

e download and install anaconda from the continuum.io site for Windows;
e download and install anaconda from the continuum.io site for Linux;

e download and install cygwin for Windows, which has Python packages avail-
able;

e use the native Python installation that comes with your Linux distribution. I use
openSuSe Linux and this can be installed with Python or added using the Yast
systems tool;

e download and install Python for Windows from the Python.org site;
e download and build from source for Linux from the Python.org site;

e install the Windows subsystem for Linux on a Windows platform,;

Chapter 1 Ian D Chivers

Overview 17

e download and install Microsofts Hyper V manager and install a linux distribu-
tion;

There is a coverage of each option in the sections that follow.

1.7 Windows
We will look at

e anaconda download and install;

e cygwin download and install;

e python download and install;

e using Microsoft Visual Studio as a development platform,;

e using the Windows Subsystem for Linux for development;

e installing Hyper V manager and a linux distribution for Python development;
We will also look at the cartopy and basemap modules for mapping.

1.71 Windows and anaconda

If you visit
https://www.anaconda.com/

you will see a download [tab].

Here is a screen shot of the download page.

= u] X
O 0-_) https://www.anaconda.com/distribution/ - Search... p - ﬂ] \,
@ SW2 - BBC Weather O Anaconda Python/R Distrib... % |
File Edit View Favourites Tools Help
1% @ Quick crossword No 15237.. G Google X~ v (=) @m v page~ Safety~ Tools~ @~
O ANACONDA Products Wy Anaconda? Soiutions Resources Company Q A

Anaconda Distribution

The World's Most Popular Pythor/R Data Science Platform

Download

The open-source Anaconda Distribution is the easiest way to perform Pythor/R
data science and machine learning on Linux, Windows, and Mac OS X. With

o Num| Sl
ppter \ y
aver Tl million users worldwide. it is the industry standard for developing, = & Gysairy
testing. and training on a single machine, enabling individual data .

Numba

+ Quickly download 1,500+ Python/R data science packages pandas Eﬁ J # patasnadger
HoloViews

+ Manage libraries, dependencies, and environments with Conda DASK Bokeh |

+ Develop and train machine learning and deep learning models with scikit-]
learn, TensorFlow, and Theano iy .& H,0 0 [Tensorflow CONDA
« Analyze data with scalability and performance with Dask, NumPy, pandas, - g F—
and Numba

+ Visualize results with Matplotiib, Bokeh, Datashader, and Holoviews

2% Windows | @ macos | O Linux

Anaconda 2018.12 for Windows Installer

Python 3.7 version Python 2.7 version

64-Bit Graphical Installer (614.3 MB) 64-Bit Graphical Installer (560.6 ME)
32-Bit Graphical Installer (509.7 MB) 32-Bit Graphical Installer (458 6 MB)

Ian D Chivers Chapter 1

18

Overview

A Windows Anaconda installation is done by download the installer, and running the .exe,
following the instructions on the screen.

One of the aims of the project is to simplify package management and deployment associ-
ated with Python. Conda is its package management system.

Visit

https://docs.anaconda.com/anaconda

for documentation.

Here is an extract from that page.

Chapter 1

Anaconda® is a package manager, an environment manager, a Python/R data
science distribution, and a collection of over 1,500+ open source packages. Ana-
conda is free and easy to install, and it offers free community support.

Get the Anaconda Cheat Sheet and then download Anaconda.

Want to install conda and use conda to install just the packages you need? Get
Miniconda.

Anaconda Navigator or conda?

After you install Anaconda or Miniconda, if you prefer a desktop graphical user
interface (GUI) then use Navigator. If you prefer to use Anaconda prompt (or
Terminal on Linux or macOS), then use that and conda. You can also switch be-
tween them.

You can install, remove or update any Anaconda package with a few clicks in
Navigator, or with a single conda command in Anaconda Prompt (Terminal on
Linux or macOS).

To try Navigator, after installing Anaconda, click the Navigator icon on your op-
erating system’s program menu, or in Anaconda prompt (or Terminal on Linux
or macOS), run the command anaconda-navigator.

To try conda, after installing Anaconda or Miniconda, take the 30-minute conda
test drive and download a conda cheat sheet.

Packages available in Anaconda

e Over 200 packages are automatically installed with Ana-
conda.

e Over 2000 additional open source packages (including R)
can be individually installed from the Anaconda repository
with the conda install command.

e Thousands of other packages are available from Anaconda
Cloud.

e You can download other packages using the pip install
command that is installed with Anaconda. Pip packages
provide many of the features of conda packages and in
some cases they can work together. However, the prefer-

ence should be to install the conda package if it is avail-
able.

e You can also make your own custom packages using the
conda build command, and you can share them with others

Ian D Chivers

Overview 19

by uploading them to Anaconda Cloud, PyPi or other re-
positories.

e Previous versions

e Previous versions of Anaconda are available in the archive. For a list of pack-
ages included in each previous version, see Old package lists.

e Anaconda2 includes Python 2.7 and Anaconda3 includes Python 3.7. However,
it does not matter which one you download, because you can create new envi-
ronments that include any version of Python packaged with conda. See Manag-
ing Python with conda.

The above information was taken in March 2019.

Here is the package list for Anaconda 2.4.1. Notes for column 2 and 4 in the table are given
after the table. As can be seen there are a wide variety of packages, covering a lot of areas.

Name \Y Summary / License I

abstract-rendering . .

(Linux) (Mac) 0.5.1 | Rendering as binning process / 3-clause BSD Y

alabaster 0.7.6 | configurable sidebar-enabled Sphinx theme / BSD Y

anaconda-build 0.13.2 Anacogda build client library / proprietary - Continuum v
Analytics, Inc.

anaconda-client 1.2.1 | anaconda.org command line client library / BSD Y

. Convert text with ANSI color codes to
ansiZhtml 1.1.0 HTML. / GPLv3+ Y
appnope (Mac) 0.1.0 | Disable App Nap on OS X 10.9 / BSD Y
: Control AppleScriptable applications from Python

appscript (Mac) 1.0.1 / Public-Domain Y
Bash tab completion for argparse. Tab complete all the

argcomplete 1.0.0 things! / Apache Y

astroid 134 abstract syntax tree for Python with inference support. / v
LGPL

astropy 1.0.6 | Community-developed python astronomy tools / BSD Y
easy to access the Microsoft Azure components

azure 1.02 / Apache License 2.0 Y

babel 2.1.1 | Internationalization utilities / BSD Y

basemap . . .

(Linux) (Mac) 1.0.7 | Plot data on map projections with matplotlib / PSF Y

beolz 0.12.0 | columnar and compressed data containers. / BSD Y

beautifulsoup4 4.4.1 | screen-scraping library / MIT Y

. Freely available tools for computational molecular
biopython 1.66 biology / BSD-like Y
bitarray 0.8.1 | efficient arrays of booleans -- C extension / PSF Y

Ian D Chivers Chapter 1

20

Overview

Name \Y Summary / License I

blaze 0.8.3 | NumPy and Pandas interface to Big Data / BSD Y

blaze-core 0.8.3 | Blaze is the next generation of NumPy / BSD Y

. a replacement type with better performance for

blist 1.3.6 modifying large lists / BSD Y

blockspring 0.1.13 | Blockspring api wrapper for Python / MIT Y

blosc (Windows) | 1.7.0 | Blosc data compressor / MIT Y

bokeh 0.10.0 statistical and novel interactive HTML plots for Python %
/ BSD

boost 157.0 Boost‘ provides frep peer-reviewed portable C++ source v
libraries. / Boost license

boto 2.38.0 | Amazon Web Services Library / MIT Y

bottleneck 1.0.0 Fast NumPy array functions written in Cython. / Simpli- v
fied BSD

bsdiff4 1.1.4 | binary diff and patch using the BSDIFF4-format / BSD | Y

btrees 4.1.4 | scalable persistent object containers / ZPL 2.1 Y
read and write bzip2-compressed files

bz2file 0.98 / Apache License, Version 2.0 Y

bzip2 (Windows) | 1.0.6 | high-quality data compressor / BSD Y

cachecontrol 0.11.5 | httplib2 caching for requests / Apache Y

offi 191 Foreign Function Interface for Python calling C code / v
MIT

chameleon 2.22 | Fast HTML/XML Template Compiler. / BSD-like Y

cherrypy 3.8.0 | object-oriented HTTP framework / BSD Y

chest 0.2.3 | a dictionary that spills to disk / BSD Y

chrpath (Linux) 0.13 Tool to edit the rpath in ELF binaries / GPL2 Y

. A simple wrapper around optparse for powerful com-

click 1| mand line utilities. / BSD Y

cligj 0.2.0 | Click params for GeoJSON CLI. / MIT Y

cloudpickle 0.1.1 | Extended pickling support for Python objects / as-is Y

clyent 12.0 Command line client Library for windows and posix / v
BSD

cmake 331 CMake is an extensible, open-source system that man- v

(Linux) (Mac) e ages the build process / 3-clause BSD

colorama 0.3.3 | Cross-platform colored terminal text. / BSD Y

comtypes

(Windows) 1.1.2 | pure Python COM package / MIT Y

Chapter 1

Ian D Chivers

Overview 21
Name \Y Summary / License I
conda 3188 cross-platform, Python-agnostic binary package v
manager / BSD
conda-api 1.1.0 | A light weight conda interface library / BSD Y
conda-build 1182 Commands and tools for building conda packages v
/ BSD
conda-env 245 proYldes a unified interface to dealing with Conda v
environments / BSD
configobj 5.0.6 | Config file reading, writing and validation / BSD Y
contextlib2 0.4.0 backports and enhancements for the contextlib module / v
PSF
coverage 4 Code coverage measurement for Python / BSD Y
eryptacular 141 password hashing framework with berypt and pbkdf2 / v
MIT
provides cryptographic recipes and primitives to Python
cryptography 1.02 developers / Apache Y
cssselect (Linux) 091 cssselect parses CSS3 Selectors and translates them to v
(Mac) o XPath 1.0 / BSD
csvkit 0.9.1 utilities for working with CSV, the king of tabular file v
formats / MIT
cubes 101 2 light-weight Python OLAP framework for data ware- v
houses / MIT
tool and library for transferring data with URL syntax /
curl 7450 MIT/X derivate Y
cvxopt 117 CVXOPT is a free software package for convex optimi- v
(Linux) (Mac) o zation / GPL
cycler 0.9.0 | Composable style cycles / BSD Y
cymem
(Linux) (Mac) 1.3 Manage calls to calloc/free through Cython / MIT Y
The Cython compiler for writing C extensions for the
cython 0.23.4 Python language / Apache Y
Cython implementation of Toolz, high
cytoolz 0.7.4 performance functional utilities / BSD Y
dask 0.73 Task scheduhng and blocked algorithms for v
parallel processing / BSD
datashape 0.4.7 | A data description language / BSD Y
datrie 0.7 Super-fast, efficiently stored Trie for Python / LGPLv2 |Y
dbf 0.96.0 | reading/writing dBase, FoxPro, and Visual FoxPro .dbf v
03 files / BSD

Ian D Chivers

Chapter 1

22

Overview

3.2/ BSD

Name \Y Summary / License I

decorator 4.0.4 | Better living through Python with decorators / BSD Y

dill 0.2.4 | Serialize all of python (almost) / 3-clause BSD Y

diango 184 Web framework that encourages rapid development v
/ BSD

docopt 0.6.2 Pythonic argument parser, that will make you smile / v
MIT

. Utilities for general- and special-purpose documentation

docutils 012 Public-Domain, PSF, 2-clause BSD, GPLv3 Y

drmaa .

(Linux) (Mac) 0.7.6 | python DRMAA library / BSD Y

dynd-python 0.7.0 | Python exposure of DyND / BSD Y

codsa 0.13 ECDSA cryptographic signature library (pure python) / %
MIT

ephem 3.7.6. ..

(Linux) (Mac) 0 Compute positions of the planets and stars / LGPL Y

execnet 1.3.0 | rapid multi-Python deployment / MIT Y

fasteache 102 C implementation of Python 3 functools.lru cache v
/ MIT

feedparser 5.2.1 | Universal feed parser / MIT Y

flakes 230 the modular source code checker: pep8, pyflakes and co v
/ MIT

flask 0.10.1 A mlgroframework based on Werkzeug, Jinja2 and good v
intentions / BSD

flask-login 0.2.11 | User session management for Flask / MIT Y

flask-wtf 0.11 Simple integration of Flask and WTForms / BSD Y

fontconfig 2111 Fontconfig is a library for configuring and customizing v

(Linux) " | font access / BSD

freeglut)81 | @ completely OpenSourced alternative to the OpenGL v

(Linux) o Utility Toolkit library. / MIT

freetype)55 A Free, ngh'-Quahty, and Portable Font Engine v
/ FreeType License

. Python function signatures from PEP362 for Python 2.6,

funcsigs 04 2.7 and 3.2+ / Apache Y

future 0.15.2 | Clean single-source support for Python 3 and 2 / MIT Y

futures 303 Backport of the concurrent.futures package from Python v

Chapter 1

Ian D Chivers

Overview 23
Name \Y Summary / License I
. Python framework for fast Vector Space Modelling
gensim 0.12.2 / LGPL Y
cos 340 GEOS (Geometry Engine - Open Source) is a C++ port v
& o of the Java Topology Suite (JTS). / LGPL
glueviz 0.6.0 | Multidimensional data visualzation across files / MIT Y
graphviz 2.38.0 | Open Source graph visualization software. / EPL Y
greenlet 0.4.9 | lightweight in-process concurrent programming / MIT Y
gridmap 0.13.0 map Python functions onto a cluster using a grid engine v
(Linux) (Mac) 7 |/ GPL3
gunicorn (Linux) | 6 o | WSGI HTTP Server for UNIX / MIT Y
(Mac)
Read and write HDFS files from Python.
hSpy 2:5.0 / 3-clause BSD Y
hdf4 4.2.11 |/ BSD-style Y
hdfs 1.8.15 | HDFS5 is a data model, library, and file format for stor- v
A ing and managing data / BSD-like
heapdict 100 |2 heap with decrease-key and increase-key operations / v
BSD
) composable, declarative data structures for
holoviews 132 building complex visualizations / BSD Y
. HTML parser based on the WHATWG
htmlSlib 0-999 | HTML specifcation / MIT Y
icu (Linux)
(Mac) 54.1 / MIT Y
idna 2 Internationalized Domain Names in Applications / BSD | Y
python interface for databases, NoSQL stores, Amazon
iopro 1.7.2 | S3, and large data files / proprietary - Continuum Ana- | Y
lytics, Inc.
ipykernel 4.1.1 | IPython Kernel for Jupyter / BSD Y
ipyparallel 4.1.0 | Jupyter Qt Console / BSD Y
ipython 4.0.1 | Productive Interactive Computing / BSD Y
ipython_genutils | 0.1.0 | vestigial utilities from IPython / BSD Y
ipywidgets 4.1.0 | IPython Static Widgets / BSD Y
) Various helpers to pass trusted data to untrusted envi-
itsdangerous 0.24 ronments and back. / BSD Y
jbig (Linux) 71 implementation of the JBIG1 data compression standard v

(Mac)

/ GPL2

Ian D Chivers

Chapter 1

24

Overview

(Linux) (Mac)

Name \Y Summary / License I
. Julian dates from proleptic Gregorian and Julian calen-
jdeal ! dars. / BSD Y
jedi 0.9.0 |/ MIT Y
- An easy to use stand-alone template engine written in
Jinja2 2.8 pure python. / BSD Y
joblib 0.8.4 | using Python functions as pipeline jobs / BSD Y
. read/write jpeg COM, EXIF, IPTC medata
Jpeg 8d / Custom free software license Y
. An implementation of JSON Schema validation for Py-
jsonschema 2.4.0 thon / MIT Y
jupyter 1.0.0 | Jupyter metapackage / BSD Y
jupyter client 411 Jupyter protocol implementation and client libraries %
- / BSD
jupyter console 4.0.3 | Jupyter terminal console / BSD Y
jupyter _core 4.0.6 | base package on which Jupyter projects rely / BSD Y
The KEA format provides an implementation of the
kealib 1.4.5 | GDAL specification within the the HDF5 file format. Y
/ MIT
lancet 0.9.0 launch jobs, organize the output, and dissect the results v
/ BSD
launcher Anaconda's application launcher
(Mac) (Windows) | 1.0.0 / proprietary - Continuum Analytics, Inc. Y
1dan3 0.9.8. | A strictly RFC 4511 conforming LDAP V3 pure Python v
P 4 client. / LGPLv3
libdynd 0.7.0 | C++ dynamic ndarray library / BSD Y
libffi (Linux) 3.0.13 | A portable foreign-function interface library / MIT Y
libgfortran 1 GNU Fortran runtime library / GPL3 Y
(Linux)
) 4.3.3. | libraries and data formats that support
libnetedf 1 array-oriented scientific data / MIT Y
libpng 16.17 libpng is the official PNG reference library / libpng li- v
cense
libsodium (Linux) 103 2 modern software library for encryption, v
(Windows) o signatures, password hashing, etc. / MIT
libtiff 4.0.6 | tiff image library / BSD-like Y
libxmi2 2.9.2 | The XML C parser and toolkit of Gnome / MIT Y

Chapter 1

Ian D Chivers

Overview 25
Name \Y Summary / License I
libxslt 1108 Libxslt is the XSLT C library developed for v
(Linux) (Mac) o the GNOME project / MIT
lighttpd .
(Linux) (Mac) 1.4.36 | light web server (httpd) / BSD Y
line profiler 1 Line-by-line profiler / BSD Y
lvmlite 0.8.0 lightweight wrapper around basic LLVM functionality / %
BSD
locket 0.2.0 | File based locks / BSD Y
lockfile 0.10.2 | Platform-independent file locking module / MIT Y
(Linux) (Mac) e p &
. collection of low-level Python packages and
logilab-common /1.0.2 modules used by Logilab projects / LGPL Y
XML processing library combining libxml2/libxslt with
bxml 344 the ElementTree API / BSD Y
mako 1.0.3 | templating language / MIT Y
markdown 2.6.2 | Python implementation of Markdown / BSD Y
markdown?2 2.3.0 | Python implementation of Markdown / BSD Y
Implements a XML/HTML/XHTML Markup safe string
markupsafe 0.23 for Python / BSD Y
mathjax 29 A JavaScript display engine for mathematics that works v
in all browsers / Apache
matplotlib 1.5.0 | Python plotting package / PSF-based Y
mccabe 0.3 McCabe checker, plugin for flake8 / MIT Y
mdp 33 a Python data processing framework. / BSD Y
meld3 1.0.2 | an HTML/XML templating engine / BSD-derived Y
menuinst . .
(Windows) 1.3.1 | cross platform install of menu items / BSD Y
mingw 47 GCC-like development environment for native v
(Windows) ' Windows / Public-Domain
. The fastest markdown parser in pure Python with ren-
mistune 0.7.1 derer feature / BSD Y
mock 130 A Python mocking and patching library for testing v
/ BSD
mpidpy (Linux) 1.3.1 | MPI for Python / BSD Y
mpich? (Linux) 1.4.1p | a high performance widely portable implementation of v

the MPI standard / mpich license

Ian D Chivers

Chapter 1

26

Overview

Name \Y Summary / License I
Python library for arbitrary-precision
mpmath 0.19 floating-point arithmetic / BSD Y
msgpack-python | 0.4.6 MessagePack is an efficient binary serialization format / v
Apache
msvc_runtime Bundles of the MSVC runtime for your Python / Propri-
. 1.0.1 Y
(Windows) etary
multimethods 1.0.0 | A simple python multidispatch. / MIT Y
multipledispatch | 0.4.8 | Multiple dispatch / BSD Y
murmurhash 0.24 Cython .pxd files for some of the MurmurHash 2 and 3 v
(Linux) (Mac) ' hash functions / Public-Domain
mysql- . : .
connector-python 2.0.3 | MySQL driver written in Python / GPL2 Y
nano . .
. 2.4.1 | An enhanced clone of the Pico text editor / GPL2 Y
(Linux) (Mac)
natsort 4.0.3 | Sort lists naturally / MIT Y
converts notebooks to various other formats via
nbeonvert 4.0.0 Jinja templates / BSD Y
nbformat 401 the base implementation of the Jupyter Notebook format v
/ BSD
ncurses 59 free software emulation of curses in System V Release v
(Linux) (Mac) ' 4.0, and more / ncurses license
netcdf4 1.1.9 | python/numpy interface to netCDF library / MIT Y
Python package for creating and manipulating
networkx I graphs and networks / BSD Y
nltk 3.1 Natural Language Toolkit / Apache Y
node-webkit 0.10.1 calls Node.js modules from DOM and enables a v
(Mac) (Windows) | ~~ | new way of writing applications / MIT
nose 1.3.7 | nose extends unittest to make testing easier / LGPL Y
notebook 406 |2 v&{eb-based notebook environment for interactive com- v
puting / BSD
numba 0.22.1 | compiling Python code using LLVM / BSD Y
numexpr 2.4.4 | Fast numerical expression evaluator for NumPy / MIT |Y
array processing for numbers, strings, records, and ob-
umpy 193 iects. / BSD Y
Sphinx extension to support docstrings in Numpy for-
numpydoc 0.5 mat / BSD Y
odo 0.3.4 | Data Migration for Blaze Project / BSD Y

Chapter 1

Ian D Chivers

Overview 27

Name \Y Summary / License I

openblas (Linux) | 0.2.14 | optimized BLAS library based on GotoBLAS2 / BSD Y
A Python library to read/write Excel 2007

openpyxl 226 | Mlsx/xlsm files / MIT Y
OpenSSL is an open-source implementation of the SSL

openssl 1.0.2d and TLS protocols / Apache-style Y
Powerful data structures for data analysis,

pandas 0.17.1 time series,and statistics / BSD Y
Data readers extracted from the pandas codebase,

pandas-datareader | 0.2.0 should be compatible with recent pandas versions Y
/ BSD License

param 132 declarative Python programming using Parameters v
/ BSD

paramiko 1.15.3 | SSH2 protocol library / LGPL Y

partd 0.3.2 | Appendable key-value byte store / BSD Y

. comprehensive password hashing framework supporting

passlib 1.6.5 over 30 schemes / BSD Y
Load, configure, and compose WSGI applications and

pastedeploy 1.5.2 servers / MIT Y

patch (Windows) | 2.5.9 | Native Win32 versions of common unix tools / GPL Y

. a small utility to modify the dynamic linker

patchelf (Linux) | 0.6 and RPATH of ELF executables / GPL3 Y

path.py 8.1.2 | module wrapper for os.path / MIT Y
a library for describing statistical models and building

patsy 0.4.0 design matrices. / BSD Y

pbkdf2 13 the password-based key derivation function, PBKDF2 / v
MIT

pbr 1.3.0 | Python Build Reasonableness / Apache Y

pep8 1.6.2 | Python style guide checker / MIT Y

persistent 4.1.1 | translucent persistent objects / ZPL 2.1 Y

pexpect 33 Pexpect allows easy control of interactive console appli- v

(Linux) (Mac) ' cations / ISC

pickleshare 0.5 tiny shelve-like database with concurrency support v
/ MIT

pillow 3.0.0 | Python Imaging Library (Fork) / PIL license Y

pip 712 PyPA recommended tool for installing Python packages %

/ MIT

Ian D Chivers

Chapter 1

28

Overview

Name \Y Summary / License I
The smartest command line arguments parser in
plac 09-1" 1 the world / BSD Y
ply 3.8 Python Lex & Yacc / BSD Y
preshed 0.44 Cython hash table that trusts the keys are pre-hashed v
(Linux) (Mac) ' / MIT
proj4 4.9.1 | PROJ.4 Cartographic Projections library / MIT Y
. cross-platform process and system utilities module for
psutil 3.3.0 Python / BSD Y
psycopg?2 261 Python-PostgreSQL Database Adapter v
(Linux) (Mac) o / LGPL, BSD-like, ZPL
ptyprocess . .
(Linux) (Mac) 0.5 Run a subprocess in a pseudo terminal / ISC Y
library with cross-python path, ini-parsing, io, code, log
Py L4301 pocilities / MIT Y
asnl 0.1.9 Offline IP address to Autonomous System v
Py o Number lookup module / BSD
pycosat 0.6.1 | bindings to picosat (a SAT solver) / MIT Y
pycparser 2.14 C parser in Python / BSD Y
pycrypto 2.6.1 | Cryptographic modules for Python. / Public-Domain Y
7.19.5 | PycURL -- cURL library module for Python / LGPL,
pycurl Y
A MIT
pyflakes 1.0.0 | passive checker of Python programs / MIT Y
Pygments is a syntax highlighting package written
pygments 20214 Python / BSD Y
pylint 1.4.2 | python code static checker / GPL Y
Markov Chain Monte Carlo sampling toolkit
pyme 2.3.6 / Academic Free License Y
pymongo 3.0.3 | Python driver for MongoDB / Apache Y
pymysql 0.6.7 | Pure-Python MySQL Driver / MIT Y
pyodbc 3.0.10 | DB API Module for ODBC / MIT Y
pyopengl i).l.la Standard OpenGL bindings for Python / BSD Y
pyopengl 3118 1 g indard OpenGL bindings for Python / BSD Y
-accelerate 1
pyopenss] 0.15.1 Python wrapper module around the OpenSSL library / v
Apache
pyparsing 2.0.3 | Python parsing module / MIT Y

Chapter 1

Ian D Chivers

Overview 29
Name \Y Summary / License I
. Python interface to PROJ4 library for
pPypro] 1.94 cartographic transformations. / MIT Y
PyQt is a Python binding of the cross-platform
pyqt 4.11.4 GUI toolkit Qt / Commercial, GPLv2, GPLv3 Y
pyramid 1.5.7 | The Pyramid Web Framework, a Pylons project/ BSD | Y
pyramid 0.3 bindings for the Chameleon templating system for Pyra- %
chameleon ' mid / BSD
pyra- 241 interactive HTML debugger for Pyramid application de- v
mid_debugtoolbar | 7 velopment / BSD
g Jinja2 template bindings for the Pyramid web
pyramid_jinja2 2.5 framework / BSD Y
: Mako template bindings for the Pyramid web
pyramid mako 1.0.2 framework / BSD Y
pyramid tm 0.12 allows Pyramid requests to join the active transaction / v
BSD
pyreadline . . .
(Windows) 2.1 A python implmementation of GNU readline. / BSD Y
pyserial 2.7 Python Serial Port Extension / PSF Y
pysnmp] .
(Linux) (Mac) 4.2.5 | A pure-Python SNMPv1/v2c/v3 library / BSD Y
pystan 2.8.0. . :
(Linux) (Mac) 0 PyStan provides an interface to Stan / GPL3 Y
brings together Python, HDF5 and NumPy to
pytables 3.22 easily handle large amounts of data / BSD Y
pytest 2.8.1 | simple powerful testing with Python / MIT Y
] pytest plugin with mechanisms for caching across test
pytest-cache 1 runs / MIT Y
pytest-pep8 1.0.6 | pytest plugin to check PEP8 requirements / MIT Y
python 3.5.1 | general purpose programming language / PSF Y
python-dateutil 249 Extensions to the standard Python datetime module v
/ BSD
. 2015. | World timezone definitions, modern and historical v
by 7 / MIT
pywget 2.2 pure python download utility / Public-Domain Y
pywin32 . .
(Windows) 219 Python extensions for Windows / PSF Y
pyyaml 3.11 YAML parser and emitter for Python / MIT Y

Ian D Chivers

Chapter 1

30

Overview

(Linux) (Mac)

Name \Y Summary / License I
pyzmq 14.7.0 | zeromq bindings for Python / LGPL and BSD Y
qt 487 Sé I1)sL a cross-platform application and UI framework / v
qtconsole 4.1.1 | Jupyter Qt Console / BSD Y
quandl 2.8.9 | Package for Quandl API access / MIT Y
queuelib 1.4.2 | Collection of persistent (disk-based) queues / BSD Y
regdline 6.2 line-editing for programs with a command-line interface %
(Linux) (Mac) ' / GPL3

re(.iis 769 Redis is an open source, BSD licensed, v
(Linux) (Mac) advanced key-value cache and store / 3-clause BSD
Ei‘li:ug (Macy | 2103 | Redis Python Client / MIT Y
reportlab 3.2.0 | The ReportLab Toolkit / BSD Y
repoze.lru 0.6 A tiny LRU cache implementation and decorator / BSD | Y
requests 2.8.1 | Python HTTP for Humans / Apache Y
rope 0.9.4 | a python refactoring library / GPL Y
routes 2.2 Routing Recognition and Generation Tools / MIT Y
runipy 0.1.3 | Run IPython notebooks from the command line / BSD | Y
sas7bdat 2.0.6 | sas7bdat file reader for Python / MIT Y
sci'kit-bio 0.4.0 Data structuresf glgorithms and educational v
(Linux) (Mac) resources for bioinformatics. / BSD

scikit-image 0.11.3 | Image processing routines for SciPy / 3-clause BSD Y
scikit-learn 0.17 r?nrslitl gof g?lctﬁc;r;eng)élgles for machine learning and data v
scikit-rf 0.14.1 | Object Oriented Microwave Engineering / new BSD Y
scipy 0.16.0 | Scientific Library for Python / BSD Y
seaborn 0.6.0 | statistical data visualization / BSD Y
semantic_version | 2.4.2 | A library implementing the 'SemVer' scheme. / BSD Y
setuptools_sem 190 :ngs‘t;lgsséd package to manage your versions by scm v
?Iliinux) (Mac) 1.11 full-fledged subprocess replacement for Python / MIT Y
shapely 1.5.11 | Geometric objects, predicates, and operations / BSD Y

Chapter 1

Ian D Chivers

Overview 31
Name \Y Summary / License I
simplegeneric 081 lets you define simple single-dispatch generic functions v
/ ZPL 2.1
sip 4.16.9 |/ GPL3 Y
Six 1.10.0 | Python 2 and 3 compatibility utilities / MIT Y
provides 16 stemmer algorithms generated from Snow-
snowballstemmer | 1.2.0 ball algorithms / BSD Y
. SocklJS python server implementation on top of
sockjs-tornado 101 Tornado framework / MIT Y
spacy .
(Linux) (Mac) 0.99 Industrial-strength NLP / MIT Y
sphinx 1.3.1 | Python documentation generator / BSD Y
sphinx_rtd theme | 0.1.7 | ReadTheDocs.org theme for Sphinx / BSD Y
spyder 2.3.8 | Scientific PYthon Development EnviRonment / MIT Y
sqlalchemy 1.0.9 | Database Abstraction Library / MIT Y
sqlite 3.8.4. | self-contained, zero-configuration, SQL database engine v
(Linux) (Mac) 1 / Public-Domain
sqlparse 0.1.16 | A non-validating SQL parser module for Python / BSD | Y
statsmodels 0.6.1 Statistical computations and models for use with SciPy / v
3-clause BSD
stripe 1.25.0 | Stripe python bindings. / MIT Y
0.7.6. | SymPy is a Python library for symbolic mathematics /
SYHpy 1 3-clause BSD Y
terminado (Linux) 0.5 Terminals served to term.js using Tornado websockets / v
(Mac) ' BSD
text-unidecode 1 the most basic Text Unidecode port / Artistic License Y
(Linux) (Mac) p
theano 0.7.0 Optimizing compiler for evaluating mathematical %
(Linux) o expressions on CPUs and GPUs / BSD
thinc 4.0.0 | Learn sparse linear models / Commercial, GPLv2 Y
(Linux) (Mac) e p :
dynamic programming language with GUI elements
tk 8.5.18 BSD-like Y
toolz 0.7.4 | List processing tools and functional utilities / BSD Y
tornado 43 a Python web framework and asynchronous networking v
library / Apache
traitlets 4.0.0 | configuration system for Python applications / BSD Y
transaction 1.4.4 | transaction management for Python / ZPL 2.1 Y

Ian D Chivers

Chapter 1

32

Overview

(Mac) (Windows)

vice versa / 3-clause BSD

Name \Y Summary / License I
. . Utility library for 118n relied on by various Repoze and
translationstring 1.3 Pyramid packages / BSD Y
. Twisted is an event-driven networking engine for Py-
twisted 15.4.0 thon / MIT Y
ujson 1.33 Ultra fast JSON encoder and decoder for Python / BSD | Y
unicodecsy 0.14.1 The unicodecsv file reads and decodes byte strings for v
you / BSD
unidecode 0.4.17 | ASCII transliterations of Unicode text / GPL2 Y
unixodbc 234 unixODBC is an open source project that implements v
(Linux) o the ODBC API / LGPLv2
unxutils 14.04. s . .
(Windows) 03 ports of common GNU utilities to native Win32 / GPL3 | Y
S . Util-linux is a suite of essential utilities for any Linux
util-linux (Linux) | 2.21 system / GPL2 Y
venusian 1 A library for deferring decorator actions / BSD Y
virtualenv 13.0.1 | Virtual Python Environment builder / MIT Y
w3lib 1.12.0 | Library of web-related functions / BSD Y
. production-quality WSGI server with very
waltress 0.8.9 acceptable performance / ZPL 2.1 Y
webob 1.4.1 | WSGI request and response object / MIT Y
webtest 2.0.18 | helper to test WSGI applications / MIT Y
werkzeug 0.11.2 The Swiss Army knife of Python web development / v
BSD
wheel 0.26.0 | built-package format for Python / MIT Y
Fast, pure-Python full text indexing, search, and spell
whoosh 270 | hecking library / BSD Y
workerpool 0.9.4 Module for distributing jobs to a pool of worker threads v
/ MIT
A flexible forms validation and rendering
wiforms 202 library for Python / BSD Y
ErCES-C 312 Xerces-C++ is a validating XML parser written in %
o a portable subset of C++ / Apache 2.0
Library for developers to extract data from Microsoft
xlrd 0.9.4 Excel spreadsheet files / BSD Y
xIsxwriter 0.7.7 | A Python module for creating Excel XLSX files/ BSD |Y
xlwings 0.5.0 Make Excel fly. Interact with Excel from Python and v

Chapter 1

Ian D Chivers

/ ZPL 2.1

Overview 33
Name \Y Summary / License I
writing data and formatting information to
xhwt 100 Excel files / BSD Y
Xray 0.6.1 | N-D labeled arrays and datasets in Python / Apache Y
. data compression software with high
xz (Linux) (Mac) | 5.0.5 compression ratio / Public-Domain, GPL Y
yaml 016 & human friendly data serialization standard v
(Linux) (Mac) o for all programming languages / MIT
yt 329 An analysis and visualization toolkit for Astrophysical v
(Linux) (Mac) o simulations / BSD
a messaging system, or
zeromq 4.1.3 "message-oriented middleware" / LGPL Y
Jib 128 masswely spiffy yet dghcqtely ' v
unobtrusive compression library / zlib
zope.deprecation | 4.1.2 | Zope Deprecation Infrastructure / ZPL 2.1 Y
zope.interface 4.1.3 | Interfaces for Python / ZPL 2.1 Y
zope.sqlalchemy | 0.7.6 minimal Zope/SQLAlchemy transaction integration %

Table notes

e (Column 2 - V = Version

e Column 4 - In installer

Ian D Chivers Chapter 1

34 Overview

1.7.11 Accessing Anaconda and Python on Windows

By installing Anaconda on Windows you get access to Anaconda from the start menu. I rec-
ommend installing from a command prompt with administrator rights. Here is a screen shot.

ALQUDE FNIOLOsNoP EIEments 11
Alarms & Clock

AMD

Anaconda3 (64-bit) e

Internet

Explorer
Anaconda Navigator P

Anaconda Prompt

Jupyter Notebook o

Prompt
. Reset Spyder Settings

@‘ Spyder

B Android SDK Tools

2 l Android Studio

l Anquet Maps

O

Anquet Technology Ltd

As you can see you get the choice of
e Anaconda Navigator

e Anaconda Navigator is a desktop graphical user interface
(GUI) included in Anaconda® distribution that allows you
to launch applications and easily manage conda packages,
environments and channels without using command-line
commands. Navigator can search for packages on Ana-
conda Cloud or in a local Anaconda Repository. It is avail-
able for Windows, macOS and Linux.

e Anaconda prompt
e Jupyter Notebook

e The Jupyter Notebook is an open-source web application
that allows you to create and share documents that contain
live code, equations, visualizations and narrative text. Uses
include: data cleaningand transformation, numerical simu-

Chapter 1 Ian D Chivers

Overview

lation, statistical modeling, data visualization, machine
learning, and much more.

e Reset Spyder settings

e Spyder

Spyder is the Scientific PYthon Development EnviRon-
ment: a powerful interactive development environment for
the Python language with advanced editing, interactive
testing, debugging and introspection features and a numer-
ical computing environment thanks to the support of
IPython (enhanced interactive Python interpreter) and pop-
ular Python libraries such as NumPy (linear algebra),
SciPy (signal and image processing) or matplotlib (interac-
tive 2D/3D plotting).

Spyder may also be used as a library providing powerful
console-related widgets for your PyQt-based applications —
for example, it may be used to integrate a debugging con-
sole directly in the layout of your graphical user interface.

The second option allows simple compile and run from the command line.

35

To run the graphics examples you will need to install matplotlib and to run the mapping ex-
amples you will need to install cartopy.

From a python administrator command prompt run the following commands:

conda install matplotlib

followed by

conda install -c conda-forge cartopy

and this will enable you to run the graphics examples.

Note that the process based parallel examples won't run correctly with this version of Py-
thon under Windows. You need to use the cygwin version.

Here are some useful commands.

conda update conda - update the package manager
conda list conda - display version information
conda update anaconda - update anaconda

condal update --all - update all components

e conda info - basic information

You will need to run the update commands as administrator.

Here is the output from running the conda info command on one of my systems.

active environment : base
active env location : C:\ProgramData\Anaconda3
shell level : 1
user config file : C:\Users\ian\.condarc
populated config files : C:\Users\ian\.condarc
conda version : 4.4.10
conda-build wversion : 3.4.1

python version : 3.6.4.final.0

Ian D Chivers

Chapter 1

36 Overview

base environment : C:\ProgramDatal\Anaconda3 (read
only)
channel URLs : https://repo.contin-

uum.io/pkgs/main/win-64

https://repo.contin-
uum.io/pkgs/main/noarch

https://repo.contin-
uum.io/pkgs/free/win-64

https://repo.contin-
uum.io/pkgs/free/noarch

https://repo.contin-
uum.io/pkgs/r/win-64

https://repo.contin-
uum.io/pkgs/r/noarch

https://repo.contin-
uum.io/pkgs/pro/win-64

https://repo.contin-
uum.io/pkgs/pro/noarch

https://repo.contin-
uum.io/pkgs/msys2/win-64

https://repo.contin-
uum.io/pkgs/msys2/noarch

package cache : C:\ProgramData\Anaconda3\pkgs

C:\Users\ian\AppData\Lo-

cal\conda\conda\pkgs
envs directories : C:\Users\ian\AppData\Lo-

cal\conda\conda\envs

C:\ProgrambData\Anaconda3\envs

C:\Users\ian\.conda\envs

platform : win-64
user-agent : conda/4.4.10 requests/2.18.4

CPython/3.6.4 Windows/10 Windows/10.0.17763

administrator : False
netrc file : None
offline mode : False

Try this out on your system.

1.7.2 Windows - cygwin python version
Visit

https://www.cygwin.com/

The parallel programming examples under Windows require the installation of the Cygwin
version of Python.

Chapter 1 Ian D Chivers

Overview

Here is the cygwin home page.

37

—] x
e (= |E nttpsi//cygwin.com/ p-ac || HE BBC Weat... ‘ & cygwin x | @, Welcome... | LA N O]
File Edit View Favourites Tools Help
& 5o~ v [& v Pagev Safety~ Toolsv @
Cygwin] ()
Install Cygwin
Update Cygwin
Search Packages
Licensing Terms
CygwiniX Get that Linux: feeling - on Windows
Community
Reporting Problems
T s . . .
Mol s This is the home of the Cygwin project
Newsgroups
IRC channels
G : ‘What...
Mirror Sites
Donations ..is it? _..ism't it?
Dl;t;\u;\emanon Cygwin is: Cygwin is not:
User's Guide * alarge collection of GNU and Open Source tools * away to run native Linux apps on Windows. You
AP| Reference which provide functionality similar to a Linux must rebuild your application ffom source if vou
Acronyms distribution on Windows. want it to run on Windows.
+ away to magically make native Windows apps
Contributing + aDLL (cygwinl.dll) which provides substantial aware 01:U'NTX® functionality like signals, ptys,
Snapshots POSIX API functionality etc. Again, you need to build your apps from source
Source in GIT : 1f you want to take advantage of Cygwin
Cygwin Packages functionality.
Related Sites
Red Hat Cygwin Product The Cygwin DLL currently works with all recent, commercially released x86 32 bit and 64 bit versions of
Windows, starting with Windows XP SP3.
For more information see the FAQ.
Current Cygwin DLL version
The most recent version of the Cygwin DLL is 2.4.0. Install it by running setup-x86.exe (32-bit installation)
or setup-x86 64.exe (64-bit installation).
Use the setup program to perform a fresh install or to update an existing installation.
Note that individual packages in the distribution are updated separately from the DLL so the Cygwin DLL
version is not useful as a general Cygwin release number.
Commercial Support for Cygwin v
@ =00 ~

I use the 64 bit version. The setup program can be used to do a new install or update an ex-
isting version. When you run the setup program you get the following list of packages to
install.

e accessibility
e admin

e archive

e audio

e Dbase

e database
e debug

e devel

e doc

e cditors

e games

e GNOME

Ian D Chivers Chapter 1

38 Overview

e graphics
e interpreters
e KDE
e libs
e lua
e LXDE
e Mail
e mate
e math
e misc
e net
e OCaml
e Office
e perl
e PHP
e publishing
e python
e Ruby
e Scheme
e Science
e Security
e Shells
e Sugar
e System
o tcl
o fext
e utils
e video
e web
o XllI
o Xfce
The following list has the Python packages first and the rest indented.
accessibility
admin
archive
audio
base
database
debug

Chapter 1 Ian D Chivers

Overview

devel
doc
editors
games
GNOME
graphics
interpreters
KDE
libs
lua
LXDE
Mail
mate
math
misc
net
OCaml
Office
perl
PHP
publishing
python
Ruby
Scheme
Science
Security
Shells
Sugar
System
tcl
text
utils
video
web
X11
Xfce

39

Make sure you install all of the Python packages. If you already have cygwin installed a

cygcheck -c
will provide details of installed packages.

The following commands

cygcheck -c > installed.txt
$ cat installed.txt | grep python | wc
236 708 18644

shows 236 installed Python components on one cygwin installation.

Ian D Chivers

Chapter 1

40 Overview

Here is a screen shot of part of a cygwin install.

E Cygwin Setup - Select Packages = O x
Select Packages
Select packages to download -
Search Clear OKesp ®@Cur OBp | View | Category
Category Cument Mew Bin? Src? Size
B Al &¥ Install

Database &% Install
Debug &% Install
Devel &¥ Instal
Doc ¥ Install
GNOME &¥ Instal
Graphics &¥ Instal
Interpreters &¥ Install
KDE &% Instal

Libs 4¥ Install
MATE &F Install
Math ¥ Install

Met &¥ Install
Python 4% Install
Text &¥ Install

Litils &¥ Install

¥

£ >

Hide obzolete packages

< Back Mext = Cancel

Note the python keyword in the search box. I normally split the install into two stages
e first a download

and secondly
e install from local directory

in case anything goes wrong with the download.

Chapter 1 Ian D Chivers

Overview 41

1.7.3 Windows - Python download
Visit
https://www.python.org/downloads/

to download the software. Here is a screenshot of their home page.

- O X
e B hitps://www.python.org/ £~ ¢ || om BEC Weat..| B Cygwin | ® Welca..
File Edit View Favourites Tools Help
3 i v B - 0 @& v Pagew Safetyr Tools+ @ ”

Python

e python”

About Downloads

o I

Documentation Community Success Stories News Events

Quick & Easy to Learn

Experienced programmers in any other language can pick up

g r 1
ellls, 1D Ryl Python very quickly, and beginners find the clean syntax and

indentation structure easy to learn. Whet your appetite with

our Python 3 overview.

What is your name?
Python
Hi, Python.

Python is a programming language that lets you work quickly
and integrate systems more effectively. »> Learn More

Docs
Documentation for Python's

standard library, along with
tutorials and guides, are

& Download

Python source code and
installers are available for

(M Get Started

Whether you're new to

& Jobs

Looking for work or have a
Python related position that
you're trying to hire for? Our

programming or an experienced
developer, it's easy to learn and download for all versions! Not

sure which version to use? Check available online.

use Python.

Start with our Beginner’s Guide

here
docs python.org

Latest: Python 3.5.1 -

relaunched community-run job
board is the place to go

jobs.python.org

< >

0% -
I downloaded the 3.5.x version.
1.7.4 Windows and Microsoft Visual Studio
Another option is to use Microsoft Visual Studio. On my laptop I have
e Microsoft Visual Studio Community 2017, 15.6.4

installed. There is an option to create Python projects from within Visual Studio. There are
the following options:

e (lobal default or an auto detected environment
e Anaconda 5.0.0
e Python 3.6 (64 bit)

The IDE is Python aware and the code is colour coded. I set things up to point to my de-
fault example directory

c:\documnt\python\examples

Ian D Chivers Chapter 1

42 Overview

and all of the examples appear in one of the Windows. They can be clicked on and run in-
dividually.

On one of my desk top systems I needed to install additional components. Here is a screen
shot.

Modifying — Visual Studio Community 2017 — 15.6.4 x
Workloads Individual components Language packs Installation locations
Installation details
Web & Cloud (7) > Mobile development with JavaScript
» Mobile development with C++
@ ASPNET and web development A Azure development » Game development with C++ %
Build web applications using ASP.NET, ASP.NET Core, Azure SDKs, tools, and projects for developing cloud apps, > Visual Studio extension development
HTML/JavaScript, and Containers including Docker support. creating resources, and building Containers including...) .
» Linux development with C++
» .NET Core cross-platform development
; *
P Python development @ Node.js development O > Python.developrnent . o
Editing, debugging, interactive development and source Build scalable network applications using Node.js, an ~ Data science and analytical applications *
control for Python. asynchronous event-driven JavaScript runtime. Optional
F# desktop language support
Python language support
¥ Rlanguage s ort
e Data storage and processing |ﬂl' Data science and analytical applications . m,gﬁ“ ‘: ”:‘i B doionment ol
untime suppor velopmen
Connect, develop, and test data solutions with SQL Server, A Languages and tooling for creating data science Anam”da;ﬁrb‘l 5.00) s
- 0.
Azure Data Lake, or Hadoop. applications, including Python, R and F Microsoft R Client (3.3.2)
Cookiecutter template support
Python web support
l] Office/SharePoint development Python native development tools
Create Office and SharePoint add-ins, SharePoint solutions, Anaconda2 64-bit (5.0.0)
and VSTO add-ins using C#, VB, and JavaScript. Anaconda3 32-bit (5.0.0)
Anaconda2 32-bit (5.0.0)
) > Individual components *
Location
C:\Program Files (x86)\Microsoft Visual Studio\2017\Community Change...
Total space required 645 MB
By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Studio. This software —|
is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those licenses. Mo,

The download and install took several minutes.

Chapter 1 Ian D Chivers

Overview

43

Here is a screen shot of using Visual Studio for Python development.

@] examples1 - Microsoft Visual Studio
File Edit View Projet Build Debug Team Tools Test RTools Analyze Window Help

B-2 @9 - ¢ | pebug -/ Anycru -+ P Attach.. v | B _

import numpy as np

average=0.0

rainfall = np.array([3.1 , 2.0 , 2.4 , 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9,

for month in range (@,n):
sum = sum + rainfall[month]
average = sum/n;
print(" Sum = ",sum)
print(" Average = " , average)
100% ~ 4
Compiler Inline Report

Just My Code

Properties

(LI ERRIRENELEIY Compiler Optimization Report Error List Output

B & | Quick Launch (Ctrl+Q] - =

tan Chivers - [

GE-| o5 0® &=
solution Explorer (Ctrl+

n'-] Solution ‘examples1’ (1 project)
4 examplest
» [Python Environments
=8 References
=8 Search Paths
dbms
effbot
grayson
snapshot_2019_02 07
snapshot_2019_03 21
tkinter
b ah o

Solution Explorer [RESTRESI

Properties

4 Add to Source Control =

As can be seen in the on line version of these notes Visual Studio is Python aware, and the

Python code is colour coded.

When setting up a project there are several options for a version of Python. On one system

I have there were the following options
e (Global default
e Anaconda 4.1.1
e Anaconda 5.2.0
e Anaconda3 3.6
e Python 3.5
e Python 3.6

I chose Anaconda 3 3.6 for my numpy examples.

1.7.4.1 Visual Studio Community Edition 2019

Visual Studio 2019 has just been released, and I chose to install the following options

e Python
e Python miniconda
e Python web support
e Python 3 64-bit (3.7.2)
e Live Share
e 226GB
e Windows (3)
e _NET desktop development
e 523GB

Ian D Chivers

Chapter 1

44 Overview

e Desktop development
e 7.12GB
e 9.89 GB Combined
Choosing the [Start] button brings up the following

Recently added Explore

‘r Blend for Visual Studio 2019

h Python 3.7 Module Docs (64-bit) e a
h IDLE (Python 3.7 64-bit) Microsoft Edge Skype

E? Python 3.7 Manuals (64-bit)

Python 3.7 (64-bit)

Windows Software Development Kit E

Windows App Cert Kit Microsoft Excel
2010

Application Verifier (WOW)

Application Verifier (X64)

x64 %86 Cross Tools Command Pro...

x64 Native Tools Command Prompt...

¥86_x64 Cross Tools Command Pro...

%86 Native Tools Command Prompt...

Debuggable Package Manager

Developer Command Prompt for V5...

' Visual Studio 2019

and there are several Python options.

1.7.5 Windows subsystem for Linux and Python install
Windows Subsystem for Linux - The following has been taken from the Wikipedia entry.
https://en.wikipedia.org/wiki/Windows Subsystem for Linux

e Windows Subsystem for Linux (WSL) is a compatibility layer for running Linux
binary executables (in ELF format) natively on Windows 10 and Windows
Server 2019.

e WSL provides a Linux-compatible kernel interface developed by Microsoft (con-
taining no Linux kernel code), which can then run a GNU user space on top of
it, such as that of Ubuntu, openSUSE, SUSE Linux Enterprise Server, Debian
and Kali Linux. Such a user space might contain a Bash shell and command lan-
guage, with native GNU/Linux command-line tools (sed, awk, etc.), program-
ming language interpreters (Ruby, Python, etc.), and even graphical applications
(using a X11 server at the host side).

Chapter 1 Ian D Chivers

Overview 45

e Introduction and availability - When introduced with the Anniversary Update,
only an Ubuntu image was available. The Fall Creators Update moved the instal-
lation process for Linux distributions to the Windows Store, and introduced
SUSE images.

e WSL is available only in 64 bit versions of Windows 10 from version 1607. It is
also available in Windows Server 2019.

I recommend installing the Ubuntu version. This will make available complete Unix func-
tionality on the Windows platform. I use vi, sed, diff etc on a regular basis whilst program-
ming.

After starting bash you will need to run one or more of the following commands:

sudo apt install python-minimal
sudo apt install python3

Here is a screen shot of using WSL on one of my systems.

ian@DELL-7100: /mnt/c/document/python/examples — O X

or "license" for more information.

", "credits" or "license" for more information.

document$ pwd

ples$ python3

examples$ python

I am compiling with Python3.

The following are some of the useful commands
sudo apt-get update

sudo apt-get upgrade

sudo apt-get install

sudo apt-get full-upgrade

sudo apt-get install dos2unix
sudo apt-get install python3

when managing software.
1.7.6 Windows Hyper-V manager
Visit

Ian D Chivers Chapter 1

46 Overview

https://docs.microsoft.com/en-us/virtualization/
hyper-v-on-windows/quick-start/enable-hyper-v

for details of how to enable and install Hyper-V manager.
Then visit
https://docs.microsoft.com/en-us/virtualization/

hyper-v-on-windows/quick-start/quick-create-virtual-machine

for details of how to install one or more virtual machines.

Here is a screen shot from one of my Windows 10 Pro systems that has Hyper-V manager

installed.
3 Hyper-V Manager
File Action View Help
e znm HE
B DELL-435
Virtual Machines
Name State CPU Usage Assigned Memory Uptime Status
. centos7 Off
B Redhats off
B ubuntu 18.04.1LTS Saved
E Windows_XP_Pro Off
<
Checkpoints
The selected vitual machine has no checkpoints.
centos7
Created: 15/01/2018 17:12:35 Clustered: No
Configuration Version: 82
Generation: 1
Notes: None
Summary Memory Networking

Actions

Bl Quick Create..
New
‘., Import Virtual M.
1 Hyper-V Settings...
22 Virtual Switch M-
wo. Virtual SAN Man..
wa Edit Disk..
._': Inspect Disk...
B Stop Service
X Remove Server
© Refresh

48 Connect..

Ej Settings...

B Upgrade Config..
© start

Eg Checkpoint
B

Move..

»

As you can see I have the following operating systems installed
e centos 7
e Redhat 8
e Ubuntu 18.x
e Windows XP Pro
Python can be installed on the three Linux systems.

The following command

sudo apt -install python3

installs Python 3 on the Ubuntu system.
I then did

sudo apt update
sudo apt upgrade

to upgrade the base operating system, followed by

Chapter 1 Ian D Chivers

Overview 47

sudo apt install python3-numpy python3-scipy
python3-matplotlib

to install the rest of the Python environment.

1.8 Linux

In this section we will look at some of the options of using Python on a Linux platform. We
will look at OpenSuSe Linux.

1.8.1 Python and openSuSe

I used openSuSe 13.1 writing these notes. Python was already installed. I normally do a
fairly complete software install when installing openSuSe Linux as I use Linux for a wide
range of purposes.

rpm -gal > rpm list.txt

will give a complete list of all software installed. You can then use grep on the file to see
what Python components are installed.

Here are some details from one of the openSuSe 13.1 systems that I use.

cat rpm list.txt | grep python | wc

28094 lines

cat rpm list.txt | grep python3 | wc

2145 lines

1.8.2 Python, openSuSe and an anaconda installation

I recommend doing an anaconda Python install. The first thing to do is download an appro-
priate version.

https://www.continuum.io/downloads

I downloaded the 64 bit version. I recommend logging on as root and installing in
/opt/anaconda3

and adding

/opt/anaconda3/bin

to the PATH.

The download file was called

Anaconda3-2.4.1-Linux-x86 64.sh

and typing

bash Anaconda3-2.4.1-Linux-x86 64.sh

from the console started the installation process. Change the installation directory to that
show above.

1.9 Intel Python for Windows, Linux and Mac

Intel make available Python for all three platforms. My Intel Fortran licence includes access
to the software. I use the software on one of my systems.

110 Mapping with Python - basemap
Visit
http://matplotlib.org/basemap/

for details of how to do mapping with Python. Windows executables and Linux tar files are
available.

Ian D Chivers Chapter 1

48

Overview

If you do the Anaconda install above typing

conda install basemap

from the shell will install basemap, and all necessary software.

1.11 Mapping with Python - Cartopy

Visit

https://scitools.org.uk/cartopy/docs/latest/

for up to date information.

Here is an extract from that site.

Chapter 1

Cartopy is a Python package designed for geospatial data processing in order to
produce maps and other geospatial data analyses.

Cartopy makes use of the powerful PROJ.4, NumPy and Shapely libraries and
includes a programmatic interface built on top of Matplotlib for the creation of
publication quality maps.

Key features of cartopy are its object oriented projection definitions, and its abil-
ity to transform points, lines, vectors, polygons and images between those pro-
jections.

You will find cartopy especially useful for large area / small scale data, where
Cartesian assumptions of spherical data traditionally break down. If you’ve ever
experienced a singularity at the pole or a cut-off at the dateline, it is likely you
will appreciate cartopy’s unique features!

The installation guide provides information on getting up and running. Cartopy’s
documentation is arranged in userguide form, with reference documentation
available inline.

e (Coordinate reference systems in Cartopy

e (artopy projection list

e Using cartopy with matplotlib

e The cartopy Feature interface

e Understanding the transform and projection keywords
e Using the cartopy shapereader

e Cartopy developer interfaces

The outline link found above the cartopy logo on all pages can be used to
quickly find the reference documentation for known classes or functions.

For those updating from an older version of cartopy, the what’s new page out-
lines recent changes, new features, and future development plans.

Cartopy was originally developed at the UK Met Office to allow scientists to
visualise their data on maps quickly, easily and most importantly, accurately.
Cartopy has been made freely available under the terms of the GNU Lesser Gen-
eral Public License. It is suitable to be used in a variety of scientific fields and
has an active development community.

Cartopy is a Python package designed for geospatial data processing in order to
produce maps and other geospatial data analyses.

Ian D Chivers

Overview 49

Cartopy makes use of the powerful PROJ.4, numpy and shapely libraries and in-
cludes a programatic interface built on top of Matplotlib for the creation of pub-
lication quality maps.

Key features of cartopy are its object oriented projection definitions, and its abil-

ity to transform points, lines, vectors, polygons and images between those pro-
jections.

You will find cartopy especially useful for large area / small scale data, where
Cartesian assumptions of spherical data traditionally break down. If you’ve ever
experienced a singularity at the pole or a cut-off at the dateline, it is likely you
will appreciate cartopy’s unique features!

1.12 Python on line documentation

Visit

https://docs.python.org/3/download.html

Here is some information from that site.

Download Python 3.7.3rc1 Documentation
Last updated on: Mar 20, 2019.

To download an archive containing all the documents for this version of Python
in one of various formats, follow one of links in this table. The numbers in the
table are the size of the download files in megabytes.

Format

Packed as .zip

Packed as .tar.bz2

PDF (US-Letter paper size) Download (ca. 13 MiB) Download (ca. 13 MiB)
PDF (A4 paper size) Download (ca. 13 MiB) Download (ca. 13 MiB)
HTML Download (ca. 9 MiB) Download (ca. 6 MiB)

Plain Text Download (ca. 3 MiB) Download (ca. 2 MiB)

EPUB Download (ca. 5 MiB)

These archives contain all the content in the documentation.

HTML Help (.chm) files are made available in the "Windows" section on the
Python download page.

Unpacking

Unix users should download the .tar.bz2 archives; these are bzipped tar archives
and can be handled in the usual way using tar and the bzip2 program. The
InfoZIP unzip program can be used to handle the ZIP archives if desired. The
.tar.bz2 archives provide the best compression and fastest download times.

Windows users can use the ZIP archives since those are customary on that plat-
form. These are created on Unix using the InfoZIP zip program.

I recommend downloading the A4 pdf versions.

The library reference can be found at
https://docs.python.org/3/library/index.html

Ian D Chivers Chapter 1

50 Overview

1. Introduction

2. Built-in Functions

3. Built-in Constants

e 3.1. Constants added by the site module

e 4. Built-in Types

e 4.1. Truth Value Testing

e 4.2. Boolean Operations — and, or, not

e 4.3, Comparisons

e 4.4 Numeric Types — int, float, complex
e 4.5, Iterator Types

e 4.6. Sequence Types — list, tuple, range
e 4.7. Text Sequence Type — str

e 4.8. Binary Sequence Types — bytes, bytearray, memoryview
e 4.9, Set Types — set, frozenset

e 4.10. Mapping Types — dict

e 4.11. Context Manager Types

e 4.12. Other Built-in Types

e 4.13. Special Attributes

e 5. Built-in Exceptions

e 5.1. Base classes

e 5.2. Concrete exceptions
e 5.3. Warnings

e 5.4. Exception hierarchy

e 6. Text Processing Services

e 6.1. string — Common string operations

e 06.2. re — Regular expression operations

e 0.3. difflib — Helpers for computing deltas
e 6.4 textwrap — Text wrapping and filling

e 6.5. unicodedata — Unicode Database

e 0.6. stringprep — Internet String Preparation
e 0.7. readline — GNU readline interface

e 6.8. rlcompleter — Completion function for GNU readline

7. Binary Data Services

Chapter 1 Ian D Chivers

Overview 51

7.1. struct — Interpret bytes as packed binary data

7.2. codecs — Codec registry and base classes

8. Data Types

8.1. datetime — Basic date and time types

8.2. calendar — General calendar-related functions

8.3. collections — Container datatypes

8.4. collections.abc — Abstract Base Classes for Containers
8.5. heapq — Heap queue algorithm

8.6. bisect — Array bisection algorithm

8.7. array — Efficient arrays of numeric values

8.8. weakref — Weak references

8.9. types — Dynamic type creation and names for built-in types
8.10. copy — Shallow and deep copy operations

8.11. pprint — Data pretty printer

8.12. reprlib — Alternate repr() implementation

8.13. enum — Support for enumerations

9. Numeric and Mathematical Modules

9.1. numbers — Numeric abstract base classes

9.2. math — Mathematical functions

9.3. cmath — Mathematical functions for complex numbers

9.4. decimal — Decimal fixed point and floating point arithmetic
9.5. fractions — Rational numbers

9.6. random — Generate pseudo-random numbers

9.7. statistics — Mathematical statistics functions

10. Functional Programming Modules
10.1. itertools — Functions creating iterators for efficient looping
10.2. functools — Higher-order functions and operations on callable objects

10.3. operator — Standard operators as functions

11. File and Directory Access

11.1. pathlib — Object-oriented filesystem paths

11.2. os.path — Common pathname manipulations

11.3. fileinput — Iterate over lines from multiple input streams

11.4. stat — Interpreting stat() results

Ian D Chivers Chapter 1

52

Chapter 1

Overview

11.5. filecmp — File and Directory Comparisons

11.6. tempfile — Generate temporary files and directories
11.7. glob — Unix style pathname pattern expansion
11.8. fnmatch — Unix filename pattern matching

11.9. linecache — Random access to text lines

11.10. shutil — High-level file operations

11.11. macpath — Mac OS 9 path manipulation functions

12. Data Persistence

12.1. pickle — Python object serialization

12.2. copyreg — Register pickle support functions
12.3. shelve — Python object persistence

12.4. marshal — Internal Python object serialization
12.5. dbm — Interfaces to Unix “databases”

12.6. sqlite3 — DB-API 2.0 interface for SQLite databases

13. Data Compression and Archiving

13.1. zlib — Compression compatible with gzip

13.2. gzip — Support for gzip files

13.3. bz2 — Support for bzip2 compression

13.4. 1zma — Compression using the LZMA algorithm
13.5. zipfile — Work with ZIP archives

13.6. tarfile — Read and write tar archive files

14. File Formats

14.1. csv — CSV File Reading and Writing

14.2. configparser — Configuration file parser

14.3. netrc — netrc file processing

14.4. xdrlib — Encode and decode XDR data

14.5. plistlib — Generate and parse Mac OS X .plist files

15. Cryptographic Services
15.1. hashlib — Secure hashes and message digests

15.2. hmac — Keyed-Hashing for Message Authentication

16. Generic Operating System Services

16.1. os — Miscellaneous operating system interfaces

Ian D Chivers

Overview 53

16.2. i0 — Core tools for working with streams
16.3. time — Time access and conversions

16.4. argparse — Parser for command-line options, arguments and sub-com-
mands

16.5. getopt — C-style parser for command line options

16.6. logging — Logging facility for Python

16.7. logging.config — Logging configuration

16.8. logging.handlers — Logging handlers

16.9. getpass — Portable password input

16.10. curses — Terminal handling for character-cell displays
16.11. curses.textpad — Text input widget for curses programs
16.12. curses.ascii — Utilities for ASCII characters

16.13. curses.panel — A panel stack extension for curses
16.14. platform — Access to underlying platform’s identifying data
16.15. errno — Standard errno system symbols

16.16. ctypes — A foreign function library for Python

17. Concurrent Execution

17.1. threading — Thread-based parallelism

17.2. multiprocessing — Process-based parallelism

17.3. The concurrent package

17.4. concurrent.futures — Launching parallel tasks

17.5. subprocess — Subprocess management

17.6. sched — Event scheduler

17.7. queue — A synchronized queue class

17.8. dummy _threading — Drop-in replacement for the threading module
17.9. thread — Low-level threading API

17.10. _dummy_thread — Drop-in replacement for the _thread module

18. Interprocess Communication and Networking

18.1. socket — Low-level networking interface

18.2. ssl — TLS/SSL wrapper for socket objects

18.3. select — Waiting for I/O completion

18.4. selectors — High-level I/O multiplexing

18.5. asyncio — Asynchronous /O, event loop, coroutines and tasks
18.6. asyncore — Asynchronous socket handler

18.7. asynchat — Asynchronous socket command/response handler

Ian D Chivers Chapter 1

54

Chapter 1

18.8.
18.9.

Overview

signal — Set handlers for asynchronous events

mmap — Memory-mapped file support

19. Internet Data Handling

19.1

. email — An email and MIME handling package

19.2. json — JSON encoder and decoder

19.3.
19.4.
19.5.
19.6.
19.7.
19.8.
19.9.

mailcap — Mailcap file handling

mailbox — Manipulate mailboxes in various formats
mimetypes — Map filenames to MIME types

base64 — Basel6, Base32, Base64, Base85 Data Encodings
binhex — Encode and decode binhex4 files

binascii — Convert between binary and ASCII

quopri — Encode and decode MIME quoted-printable data

19.10. uu — Encode and decode uuencode files

20. Structured Markup Processing Tools

20.1.
20.2.
20.3.
20.4.
20.5.
20.6.
20.7.
20.8.
20.9.

html — HyperText Markup Language support

html.parser — Simple HTML and XHTML parser
html.entities — Definitions of HTML general entities

XML Processing Modules

xml.etree.ElementTree — The ElementTree XML API
xml.dom — The Document Object Model API
xml.dom.minidom — Minimal DOM implementation
xml.dom.pulldom — Support for building partial DOM trees
xml.sax — Support for SAX2 parsers

20.10. xml.sax.handler — Base classes for SAX handlers
20.11. xml.sax.saxutils — SAX Ultilities

20.12. xml.sax.xmlreader — Interface for XML parsers

20.13. xml.parsers.expat — Fast XML parsing using Expat

21. Internet Protocols and Support

21.1.
21.2.
21.3.
21.4.
21.5.
21.6.

webbrowser — Convenient Web-browser controller

cgi — Common Gateway Interface support

cgitb — Traceback manager for CGI scripts

wsgiref — WSGI Ultilities and Reference Implementation
urllib — URL handling modules

urllib.request — Extensible library for opening URLs

Ian D Chivers

21.7.
21.8.
21.9.

21.10.
21.11.
21.12.
21.13.
21.14.
21.15.
21.16.
21.17.
21.18.
21.19.
21.20.
21.21.
21.22.
21.23.
21.24.
21.25.
21.26.
21.27.
21.28.

Overview 55

urllib.response — Response classes used by urllib
urllib.parse — Parse URLs into components
urllib.error — Exception classes raised by urllib.request
urllib.robotparser — Parser for robots.txt

http — HTTP modules

http.client — HTTP protocol client

ftplib — FTP protocol client

poplib — POP3 protocol client

imaplib — IMAP4 protocol client

nntplib — NNTP protocol client

smtplib — SMTP protocol client

smtpd — SMTP Server

telnetlib — Telnet client

uuid — UUID objects according to RFC 4122
socketserver — A framework for network servers
http.server — HTTP servers

http.cookies — HTTP state management
http.cookiejar — Cookie handling for HTTP clients
xmlrpc — XMLRPC server and client modules
xmlrpc.client — XML-RPC client access
xmlrpc.server — Basic XML-RPC servers
ipaddress — [Pv4/IPv6 manipulation library

22. Multimedia Services

22.1.
22.2.
22.3.
22.4.
22.5.
22.6.
22.7.
22.8.
22.9.

audioop — Manipulate raw audio data

aifc — Read and write AIFF and AIFC files
sunau — Read and write Sun AU files

wave — Read and write WAV files

chunk — Read IFF chunked data

colorsys — Conversions between color systems
imghdr — Determine the type of an image
sndhdr — Determine type of sound file

ossaudiodev — Access to OSS-compatible audio devices

23. Internationalization

23.1.
23.2.

gettext — Multilingual internationalization services

locale — Internationalization services

Ian D Chivers Chapter 1

56 Overview

e 24, Program Frameworks
e 24.1. turtle — Turtle graphics
e 24.2. cmd — Support for line-oriented command interpreters

e 243, shlex — Simple lexical analysis

e 25. Graphical User Interfaces with Tk

e 25.1. tkinter — Python interface to Tcl/Tk

o 25.2. tkinter.ttk — Tk themed widgets

e 25.3. tkinter.tix — Extension widgets for Tk

e 25.4. tkinter.scrolledtext — Scrolled Text Widget
e 255.IDLE

e 25.6. Other Graphical User Interface Packages

e 26. Development Tools

e 26.1. typing — Support for type hints

e 26.2. pydoc — Documentation generator and online help system
e 26.3. doctest — Test interactive Python examples

e 26.4. unittest — Unit testing framework

e 26.5. unittest.mock — mock object library

e 26.6. unittest. mock — getting started

e 26.7.2to3 - Automated Python 2 to 3 code translation

e 26.8. test — Regression tests package for Python

o 26.9. test.support — Utilities for the Python test suite

e 27. Debugging and Profiling

e 27.1. bdb — Debugger framework

e 27.2. faulthandler — Dump the Python traceback

e 27.3. pdb — The Python Debugger

e 27.4. The Python Profilers

e 27.5. timeit — Measure execution time of small code snippets
e 27.6. trace — Trace or track Python statement execution

e 27.7. tracemalloc — Trace memory allocations

e 28. Software Packaging and Distribution
e 28.1. distutils — Building and installing Python modules
e 28.2. ensurepip — Bootstrapping the pip installer

Chapter 1 Ian D Chivers

Overview 57

28.3. venv — Creation of virtual environments

28.4. zipapp — Manage executable python zip archives

29. Python Runtime Services

29.1. sys — System-specific parameters and functions
29.2. sysconfig — Provide access to Python’s configuration information
29.3. builtins — Built-in objects

29.4. main__ — Top-level script environment

29.5. warnings — Warning control

29.6. contextlib — Utilities for with-statement contexts
29.7. abc — Abstract Base Classes

29.8. atexit — Exit handlers

29.9. traceback — Print or retrieve a stack traceback
29.10. future — Future statement definitions
29.11. gc — Garbage Collector interface

29.12. inspect — Inspect live objects

29.13. site — Site-specific configuration hook

29.14. fpectl — Floating point exception control

30. Custom Python Interpreters
30.1. code — Interpreter base classes

30.2. codeop — Compile Python code

31. Importing Modules

31.1. zipimport — Import modules from Zip archives
31.2. pkgutil — Package extension utility

31.3. modulefinder — Find modules used by a script
31.4. runpy — Locating and executing Python modules

31.5. importlib — The implementation of import

32. Python Language Services

32.1. parser — Access Python parse trees

32.2. ast — Abstract Syntax Trees

32.3. symtable — Access to the compiler’s symbol tables
32.4. symbol — Constants used with Python parse trees
32.5. token — Constants used with Python parse trees

32.6. keyword — Testing for Python keywords

Ian D Chivers Chapter 1

58 Overview

e 32.7. tokenize — Tokenizer for Python source

e 32.8. tabnanny — Detection of ambiguous indentation
e 32.9. pyclbr — Python class browser support

e 32.10. py_compile — Compile Python source files

e 32.11. compileall — Byte-compile Python libraries

e 32.12. dis — Disassembler for Python bytecode

e 32.13. pickletools — Tools for pickle developers

e 33 Miscellaneous Services

e 33.1. formatter — Generic output formatting

e 34. MS Windows Specific Services

e 34.1. msilib — Read and write Microsoft Installer files

e 34.2. msvert — Useful routines from the MS VC++ runtime
e 343, winreg — Windows registry access

e 34.4. winsound — Sound-playing interface for Windows

e 35. Unix Specific Services

e 35.1. posix — The most common POSIX system calls
e 35.2. pwd — The password database

e 35.3. spwd — The shadow password database

e 35.4. grp — The group database

e 35.5. crypt — Function to check Unix passwords

e 35.6. termios — POSIX style tty control

e 35.7. tty — Terminal control functions

e 35.8. pty — Pseudo-terminal utilities

e 35.9. fentl — The fentl and ioctl system calls

e 35.10. pipes — Interface to shell pipelines

e 35.11. resource — Resource usage information

e 35.12. nis — Interface to Sun’s NIS (Yellow Pages)
e 35.13. syslog — Unix syslog library routines

e 36. Superseded Modules
e 36.1. optparse — Parser for command line options
e 36.2. imp — Access the import internals

e 37. Undocumented Modules

Chapter 1 Ian D Chivers

The above combined with the language reference (which can be found below)
https://docs.python.org/3/reference/index.html

Overview

37.1. Platform specific modules

1. Introduction
1.1. Alternate Implementations

1.2. Notation

2. Lexical analysis

2.1. Line structure

2.2. Other tokens

2.3. Identifiers and keywords
2.4. Literals

2.5. Operators

2.6. Delimiters

3. Data model

3.1. Objects, values and types
3.2. The standard type hierarchy
3.3. Special method names

3.4. Coroutines

4. Execution model

4.1. Structure of a program
4.2. Naming and binding
4.3. Exceptions

5. The import system

5.1. importlib

5.2. Packages

5.3. Searching

5.4. Loading

5.5. The Path Based Finder

5.6. Replacing the standard import system
5.7. Special considerations for main
5.8. Open issues

5.9. References

Ian D Chivers

59

Chapter 1

60

Chapter 1

Overview

6. Expressions

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

Arithmetic conversions

Atoms

Primaries

Await expression

The power operator

Unary arithmetic and bitwise operations
Binary arithmetic operations

Shifting operations

Binary bitwise operations

6.10. Comparisons

6.11. Boolean operations

6.12. Conditional expressions
6.13. Lambdas
6.14. Expression lists

6.15. Evaluation order

6.16. Operator precedence

7. Simple statements

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

Expression statements
Assignment statements
The assert statement
The pass statement
The del statement

The return statement
The yield statement
The raise statement

The break statement

7.10. The continue statement

7.11. The import statement
7.12. The global statement

7.13. The nonlocal statement

8. Compound statements

8.1.
8.2.
8.3.

The if statement
The while statement

The for statement

Ian D Chivers

Overview 61

o 8.4. The try statement

e 8.5. The with statement
e 8.6. Function definitions
e 8.7. Class definitions

e 8.8. Coroutines

e 9. Top-level components

e 9.1. Complete Python programs
e 9.2, File input

e 0.3, Interactive input

e 9.4, Expression input

10. Full Grammar specification
should provide you a good starting point.

1.12.1 Published books and on line electronic manuscripts

Here are details of some online material (html and pdf format) and books (printed and elec-
tronic, mainly pdf.).

Reference material
A down loadable zip file can be found at
https://docs.python.org/3/download.html

There are the following documents.

c-api.pdf 209
distributing.pdf 48
extending.pdf 102
faq.pdf 110
howto-argparse.pdf 12
howto-clinic.pdf 23

howto-cporting.pdf
howto-curses.pdf

howto-descriptor.pdf

howto-functional.pdf 19
howto-ipaddress.pdf 6
howto-logging-cookbook.pdf 37
howto-logging.pdf 16
howto-pyporting.pdf 6
howto-regex.pdf 17

howto-sockets.pdf
howto-sorting.pdf
howto-unicode.pdf 12

Ian D Chivers Chapter 1

62 Overview

howto-urllib2.pdf 11
howto-webservers.pdf 11
installing.pdf 46
library.pdf 1,722
reference.pdf 141
tutorial.pdf 133
using.pdf 69
whatsnew.pdf 33

I have added a page count for each document.
Python Standard Library

e The Python Standard Library by Example, Doug Hellman, Addison Wesley,
ISBN 978-0-321-76734-9. Bonus is that a free e-version comes with it. 1302.

I have bought this. It is a good starting place as it has a lot of simple exam-
ples. Buying the book provided me with access to the ebook.

Algorithms and Data Structures

e Kent Lee, Steve Hubbard, Data Structures and Algorithms with Python,
Springer, ISSN 1863-7310 ISSN 2197-1781 (electronic) ISBN
978-3-319-13071-2 ISBN 978-3-319-13072-9 (eBook), 369.

I have the pdf version of this. Good coverage of algorithms and data struc-
tures in Python.

tkinter

e Python and Tkinter Programming, John Grayson, Manning, paper and ebook 684
pages.I bought the paper version and that provided access to the ebbok.

e John Shipman, Tkinter 8.5 reference: A GUI for Python. Free download.
e Stephen Freg, Thinking in Tkinter, 32. Free download.
Numpy
e Numpy User Guide, 107. Free download.
e Numpy Reference Manual, 1528. Free download.
matplotlib
e matplotlib manual, 2,824 pages, pdf.
Miscellaneous
e Scipy Lecture Notes, 367. Free download.

e How to think like a Computer Scientist, Allen Downey, Jeffrey Elkner, Chris
Meyers, Green Tea Press, Wellesley, Massachusetts, 288. Free download.

e Amit Saha, Doing Math with Python: Use Programming to Explore Algebra,
Statistics, Calculus, and More!, August 2015, 264 pp. ISBN: 978-1-59327-640-9
Chapter 1: Working with Numbers
Chapter 2: Visualizing Data with Graphs
Chapter 3: Describing Data with Statistics
Chapter 4: Algebra and Symbolic Math with SymPy
Chapter 5: Playing with Sets and Probability

Chapter 1 Ian D Chivers

Overview 63

Chapter 6: Drawing Geometric Shapes and Fractals
Chapter 7: Solving Calculus Problems

https://www.nostarch.com/doingmathwithpython
e Python programming for Research, Volumes 1 and 2, UCL London. UCL have
material available. Visit
http://development.rc.ucl.ac.uk/training/introductory/

http://development.rc.ucl.ac.uk/training/engineering/

1.13 Download and installation summary

So there are a lot of Python installed components. The table below provides details of what
is installed on some of the systems I use.

1.13.1 Summary of systems setups

Here is a summary of the Python setups on the systems used in producing these notes from
2015 to 2020.

Operating system Component Dell 435 Dell 7100 PC Specialist
and hardware Desktop Desktop Laptop
RAM - GB 24 16 16
Windows
cygwin
python N/A 2.7.15 2.7.10
python3 N/A 3.6.8 3.4.3
python N/A N/A N/A
anaconda
python 3.6.8 3.6.8
basemap
cartopy
visual studio Installed
2017
Intel Python
Linux openSuSe openSuSe openSuSe
15.0 15.0 15.0
python 2.7.14 2.7.14 2.7.14
python3 3.6.5 3.6.5 3.6.5
anaconda

Not all programs in the notes run on all systems, with all combinations of Python versions.

Ian D Chivers Chapter 1

64 Overview

Here are some timing comparisons for one program (c2701) on three different hardware
platforms, on 2 operating systems, and with 3 Python versions on the Windows OS.

Operating system Windows Linux

10 10 10 openSuSe 15
Python version cygwin anaconda Visual Standard

Studio 2017

Dell 7100 11.63 14.31 12.94 14.27

14.68 15.56 16.00 14.00
Dell 435 15.01 20.41 23.59 14.33

18.54 12.50 15.05 12.23
Laptop 11.37 11.27 16.35 10.98

20.15 12.56 14.44 8.98

The top figure is for an array initialisation and the bottom for a summation.
Here are some figures taken from Ubuntu under Hyper-V.

Operating System Hyper-V

Ubuntu
Dell 435 12.39

14.09
Laptop 9.34

9.68

The Dell 7100 originally ran Windows Home and couldn't run Hyper-V manager.

The Dell 435 has been retired and the PC Specialist has died.
Here is a table summarising the current systems.

Chapter 1 Ian D Chivers

Overview

65

Operating system Component Dell 5820 Dell 5515 Dell 7100
and hardware desktop laptop desktop
RAM - GB 64 32 16
Windows
Anaconda 3.9.13 3.9.12 3.83
August 2022 April 2022 July 2020
Intel 1 1 1
Microsoft 2 2 2
Visual Studio | 17.3.5
Python 3.9
Linux Native ubuntu NA openSuSe
hyper-v openSuSe 15.3
3
2.7.18
hyper-v Redhat 9.1 Redhat 9.1
3.9.13 3.9.14
wsl - opensuse | 3.10.8 3.10.9
wsl - ubuntu 3.8.10 3.10.6
Notes
1 - Intel Part of the Intel Al Analytics Toolkit
2 - Microsoft Can be included and ran from Visual Studio.
3 - openSuSe sudo zypper install base-python

This installs the 2.7.x release.

Ian D Chivers

Chapter 1

66 Overview

1.14 Course Details

The course is organised as a mixture of lectures and practicals as the most effective way to
learn a programming language is by using it. Practice is essential. Think about how you
learn French, German, etc.

It is important for you to read the notes between the time tabled sessions and also try com-
pleting the examples and problems set.

1.15 Problems

You will need access to a system running Windows, Linux or Unix. You need access to ei-
ther an IDE or simple command line access to the compiler.

Chapter 1 Ian D Chivers

An Introduction to Python 67

‘Though this be madness, yet there is method in’t’

Shakespeare.

‘Plenty of practice’ he went on repeating, all the time that Alice was getting him on his feet
again. ‘plenty of practice.’

The White Knight, Through the Looking Glass and What Alice Found There, Lewis
Carroll.

2 An Introduction to Python

In this chapter we will look at some simple program examples, illustrating some of the syn-
tax of Python programs. Python is an interpreted language so most programs can be typed
in whilst running the interpreter.

21 Example 1 - Hello World

Here is an example of using the interpreter under Windows.

Python 3.5.0 (v3.5.0:374£501f4567, Sep 13 2015, 02:16:59)

[MSC v.1900 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more in-
formation.

>>>

Here is the program.

print ("Hello world")

You just type the program in at the interpreter prompt and press the [return] key.

Python 3.5.0 (v3.5.0:374£501f4567, Sep 13 2015, 02:16:59)
[MSC v.1900 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more in-
formation.

>>> print ("Hello world")

Hello world
>>>

print() is one of the built in functions in Python. In this case we are using print to print out
some text in quotes "Hello world" to the screen.

You can also create Python program files and invoke Python from the command line. Here
is an example of doing that.

$ python3 c0201.py
Hello world

Both methods achieve the same result.

2.2 Example 2 - Simple text /o using Python style strings

This example uses the inout() function in Python 3. Here is the program.

line = input (" Type in some text ")
print (line)

Here is an example of running this program.

Ian D Chivers Chapter 2

68 An Introduction to Python

$ python3 c0202.py
Type in some text My name 1is Ian
My name is Ian

The input() function returns a string which is assigned to the variable line. We then use the
print() function to print out the value of the string variable line to the screen.

2.3 Example 3 - Simple numeric i/o
This example reads in 3 numbers and sums and averages them.

Here is the source.

x1 = float(input (" Type in the first number "))

x2 = float (input (" Type in the second number "))
x3 = float(input (" Type in the third number "))
sum = x1+x2+x3

average=sum/3.0

print (" Sum = ", sum)

print (" Average = " , average)

Here is a sample run.

$ python3 c0203.py

Type in the first number 1
Type in the second number 2
Type in the third number 3
Sum = 6.0

Average = 2.0

In this example we read one number at a time. Interaction with the user is as strings. We
then extract the number from what the user has type in and assign it to the variable on the
left hand side of the =. We cast from a string type to a float type. Real numbers in Python
are real (have a decimal point), which generally maps on to the IEEE double data type. We
then calculate the sum and average and print out the results with some explanatory text.

2.4 Running the examples using jupyter qtconsole

Here is an example of using the jupyter qtconsole on Windows. This is using a complete
anaconda install on Windows.

Typing
jupyter gtconsole

Chapter 2 Ian D Chivers

An Introduction to Python 69

from a Windows command prompt brings up the following Window.

B Jupyter QtConsole

File Edit View Kernel Window Help

Jupyter QtConsole 4.1.8

Python 3.5.1 |Anaconda 2.4.® (64-bit)| (default, Dec 7 2815, 15:88:12)
ll v.1900 64 bit (AMDG4)]

Type "copyright™, “credits" or "license" for more information.

IPython 4.8.8 -- An enhanced Interactive Python.
2 -» Introduction and overview of IPython's features.
Fgquickref -» Quick reference.
help -» Python's own help system.

Ml object? -» Details about "object', use 'object??' for extra details.
#guiref -» A brief reference about the graphical user interface.

In [1]:

Ian D Chivers Chapter 2

70 An Introduction to Python

Here is the Window after running the first three examples.

e

Jupyter QtConsole 4.1.8

Python 3.5.1 |Anaconda 2.4.8 (64-bit)| (default, Dec 7 20815, 15:88:12) [MSC v.1988
M 64 bit (AMDG64)]

Type “copyright", "credits" or "license"™ for more information.

IPython 4.8.8 -- An enhanced Interactive Python.

-» Introduction and overview of IPython's features.
%qu1ckref -» Quick reference.
help -» Python's own help system.
object? -» Details about 'object', use 'object??' for extra details.
%guiref -»> A brief reference about the graphical user interface.

In [1]: ¥run c828l.py
Hello world

In [2]: ¥run c8282.py

Type in some text My name is Ian
M My name is Ian

In [3]: ®run cez2e3.py

Type in the first number 1
Type in the second number 2
Type in the third number 3

sum = 6.8
Average = 2.8

In [4]:

Chapter 2 Ian D Chivers

An Introduction to Python 71

2.5 Using spyder

An anaconda 3 install will also make spyder available. Goto to the start menu and
Anaconda3 and you will see an entry for spyder. Clicking on this will bring up a screen
shot similar to the one below.

@ Spyder (Python 3.6) = [m) X
DsR“Ee rpEHERG MEEEp B BX £ € 9 custm s 4

Editor - C:\document\python\examples\z01.py & X Help & x
Dm??.py X tuple_01.py = ucl_csv_01.py [write_csv_01.py L z01.py B3 4|k Q Source Console ~ Dbjacd v‘ & Q

1 x =125 3455] =

2print(" Print x ",end=" ") Usage

3 print(x)

dprint(" Print list(x) send="") Here you can get help of any object

5print(list(x)) -

6 def squared(y): Variable explorer File explorer Help

7 return (y*y) TPython console X

8 print(" list(map(squared,x)))",end=" ")
9 print(list(map(squared,x))) E Console 1/4 @3 LI
10 Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:32:41) *
[MSC v.1900 64 bit (AMD64)]

Type "copyright", “"credits" or "license" for more information.

IPython 6.4.0 -- An enhanced Interactive Python.

In [1]:

TPython console History log
Permissions: RW End-of-lines: CRLF Encoding: ASCIT Line: 1 Column: 1 Memory: 32%

I organise my Python programming in a directory and subdirectory structure as shown be-
low:

c:\document\python\books
c:\document\python\documentation
c:\document\python\examples
c:\document\python\notes

I set the working directory in Spyder to
c:\document\python\examples

An

1s *.py

in the console Window provides output similar to that shown below.
23/12/2015 15:53 610 thread 10.py
23/12/2015 14:41 871 thread 11.py
14/12/2015 10:55 37 tk0l.py
14/12/2015 10:56 104 tk02.py
14/12/2015 10:57 111 tk02 1.py
14/12/2015 10:57 107 tk02 2.py
14/12/2015 10:58 422 tk03.py
26/09/2018 20:04 535 tk04.py
14/12/2015 14:30 1,155 tkdocOl.py
27/12/2015 13:41 350 tk button.py
27/12/2015 13:20 292 tk button 0l.py
27/12/2015 13:52 354 tk entry.py

Ian D Chivers Chapter 2

72 An Introduction to Python

25/11/2015 13:18 4,331 tt077.py
22/12/2015 14:08 468 tuple 0l.py
27/01/2016 10:00 537 ucl csv 0l.py
27/01/2016 19:57 962 write csv_01.py
12/01/2016 12:02 228 z01.py

359 File(s) 169,594 bytes

0 Dir(s) 187,465,453,568 bytes free

I can now compile and run the examples in this directory from the console window.

The Is command is a Unix command, but is available from the Spyder console. The pwd
command from the Spyder console shows your current directory.

You can also cut and paste examples from the notes into the editor window in Spyder.

We will be using a variety of methods throughout the notes to compile and run Python pro-
grams.

2.6 Problems

Try these examples out. Run them by
e typing them into the interpreter
e creating files and running them using files using the interpreter
e using the qtconsole

e using Spyder

Chapter 2 Ian D Chivers

Python base types, operators and expressions 73

3 Python base types, operators and
expressions

This chapter looks at the fundamental data types in Python, and a number of rules that ap-
ply to their effective use. Quite a lot of technical material is introduced in this chapter, so
don't panic if it does all make sense at first reading. We will look at examples throughout
the notes that will hopefully clarify things! The information is taken from the on line refer-
ence manual.

3.1 Built-in Types

This chapter describes the standard types that are built into the interpreter. The principal
built-in types are

e numerics,

e Dboolean types

e [terator Types

e Sequence Types — list, tuple, range
e Text Sequence Type — str

e Binary Sequence Types — bytes, bytearray, memoryview
e Set Types — set, frozenset

e Mapping Types — dict

e Context Manager Types

e sequences,

e mappings,

e classes,

e instances and

e exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their
members in place, and don’t return a specific item, never return the collection instance itself
but None.

Some operations are supported by several object types; in particular, practically all objects
can be compared, tested for truth value, and converted to a string (with the repr() function
or the slightly different str() function). The latter function is implicitly used when an object
1s written by the print() function.

3.2 Python symbols

The language reference makes the following distinctions.

3.2.1 Operators
The following tokens are operators:

+ — * * %
/ // % @
<< >> & | A .

Ian D Chivers Chapter 3

74 Python base types, operators and expressions

3.2.2 Delimiters and other characters
The following tokens serve as delimiters in the grammar:

() [] { }

, : . ; g = ->
+= —_ * = /: //: %: @:
&= | = ~= >>= <<= * k=

The period can also occur in floating-point and imaginary literals. A sequence of three peri-
ods has a special meaning as an ellipsis literal. The second half of the list, the augmented
assignment operators, serve lexically as delimiters, but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are
otherwise significant to the lexical analyzer:

|l " # \

The following printing ASCII characters are not used in Python. Their occurrence outside
string literals and comments is an unconditional error:

$?
The comment character is the # symbol.
The line continuation character is the \ symbol.

3.3 Numeric Types — int, float, complex

There are three distinct numeric types:
e integers,
e floating point numbers, and

e complex numbers.

In addition, Booleans are a subtype of integers. The arithmetic chapter has several refer-
ences to material on numerical analysis and IEEE arithmetic.

Integers have unlimited precision.

Floating point numbers are usually implemented using double in C; information about the
precision and internal representation of floating point numbers for the machine on which
your program is running is available in sys.float info.

Complex numbers have a real and imaginary part, which are each a floating point number.
To extract these parts from a complex number z, use z.real and z.imag. (The standard li-
brary includes additional numeric types, fractions that hold rationals, and decimal that hold
floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators.
Unadorned integer literals (including hex, octal and binary numbers) yield integers. Nu-
meric literals containing a decimal point or an exponent sign yield floating point numbers.
Appending 'j' or J' to a numeric literal yields an imaginary number (a complex number with
a zero real part) which you can add to an integer or float to get a complex number with real
and imaginary parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of
different numeric types, the operand with the “narrower” type is widened to that of the
other, where integer is narrower than floating point, which is narrower than complex. Com-
parisons between numbers of mixed type use the same rule. [2] The constructors int(),
float(), and complex() can be used to produce numbers of a specific type.

Chapter 3 Ian D Chivers

Python base types, operators and expressions 75

All numeric types (except complex) support the following operations, sorted by ascending
priority (all numeric operations have a higher priority than comparison operations):

Operation Result

Xty sum of x and y

X-y difference of x and y

X *y product of x and y

x/y quotient of x and y

X /'y floored quotient of x and y (1)

x%y remainder of x / y (2)

-X x negated

+x x unchanged

abs(x) absolute value or magnitude of x abs()
nt(x) x converted to integer (3)(6) int()
float(x) x converted to floating point (4)(6) float()
complex(re, im) a complex number with real part re,

imaginary part im. im defaults to zero. (6) complex()

c.conjugate() conjugate of the complex number ¢
divmod(x, y) the pair (x /'y, X % y) (2) divmod()
pow(X, y) x to the power y (5) pow()

X *¥*y x to the power y (5)

3.4 lterator Types

Python supports a concept of iteration over containers. This is implemented using two dis-
tinct methods; these are used to allow user-defined classes to support iteration. Sequences,
described below in more detail, always support the iteration methods.

3.5 Sequence Types

There are three basic sequence types: lists, tuples, and range objects.

3.6 Text Sequence Type - str

Textual data in Python is handled with str objects, or strings. Strings are immutable se-
quences of Unicode code points. String literals are written in a variety of ways:

e Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes".

nmn

e Triple quoted: "Three single quotes™, """Three double quotes

Ian D Chivers Chapter 3

76 Python base types, operators and expressions

Triple quoted strings may span multiple lines - all associated whitespace will be included in
the string literal.

3.7 Binary sequence types - bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray They are sup-
ported by memoryview which uses thebuffer protocol to access the memory of other binary
objects without needing to make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and
IEEE754 double-precision floating values.

3.8 Set types - set, frozenset
A set object is an unordered collection of distinct hashtable objects.

3.9 Mapping types - dict
A mapping object maps hashtable values to arbitrary objects.

3.10 Context manager types

Python’s with statement supports the concept of a runtime context defined by a context
manager. This is implemented using a pair of methods that allow user-defined classes to de-
fine a runtime context that is entered before the statement body is executed and exited when
the statement ends.

3.11 Other types
Python also supports
e modules - the only special operation is attribute access.
e classes
e functions - function objects are created by function definition.
e methods - functions called using the attribute notation

e code objects - Code objects are a low-level detail of the CPython implementa-
tion. Each one represents a chunk of executable code that hasn’t yet been bound
into a function.

e type objects represent the various object types.
e null object - returned by functions that don't return a value.
e cllipsis object - used by slicing
e Notlmplemented object this object is returned from comparisons and binary op-
erations when they are asked to operate on objects they don't support.
See the library reference manual for more information.

We will look at some of these in the chapters that follow.

3.12 Problems

There are none in this chapter.

Chapter 3 Ian D Chivers

Arithmetic 77

Taking Three as the subject to reason about —
A convenient number to state —

We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.

The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two:

Then subtract Seventeen, and the answer must be
Exactly and perfectly true.

Lewis Carroll, The Hunting of the Snark
Round numbers are always false.

Samuel Johnson.

4 Arithmetic

This chapter looks at arithmetic in Python, and we will have a look at several examples in
this chapter illustrating arithmetic in Python. We covered the operators in the previous
chapter.

The Python interpreter has a number of functions and types built into it that are always
available. They are listed here in alphabetical order.

abs() dict() help() min() setattr()

all() dir() hex() next() slice()

any() divmod() 1d() object() sorted()
ascii() enumerate() input() oct() staticmethod()
bin() eval() int() open() str()

bool() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()

chr() frozenset() list() range() vars()
classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() __import_ ()
complex() hasattr() max() round()

delattr() hash() memoryview() set()

We will use some of these functions in examples in this chapter.

41 Example 1 - assignment and division
Here is the first example.

a = 1.5
b = 2.0
c = a/b
print (" a = " ,a)
print (" b = " ,b)
print (" ¢ = " ,c)

Here is some sample output.

$ python3 c0401.py

a = 1.5
b = 2.0
c = 0.75

Ian D Chivers Chapter 4

78 Arithmetic

The result is as expected from our experience with mathematics.

4.2 Example 2 - division with integers
Here is the example.

i =5
i =2
k = 4
1 = i/9*k
print ("™ 1 = ",1)
print(" 3 = ",3)
print (" k = ", k)
print(" 1 = ",1)
print (" type i = ",type(1))
print (" type j = ",type(J))
print (" type k = ",type(k))
print (" type 1 = ",type(1))
Here is the output.
$ python3 c0402.py
i = 5
i = 2
k = 4
1 = 10.0
type i = <class 'int'>
type j = <class 'int'>
type k = <class 'int'>
type 1 = <class 'float'>

In this case even though i1 and j are integers the expression i/j*k evaluates as 10.0 This is at
variance with Fortran, C and C++.

4.3 Example 3 - time taken to reach the earth from the Sun.
Here is the program.

light year = 9.46 * 10**12

light minute light year/(365.25*%24.0%60.0)

light second = light minute/60.0

distance = 150.0 * 10.0**6

elapse = distance/light minute

minute = 1int (elapse)

second = int ((elapse-minute) *60)

print (" Light takes " , minute , " minutes and ",second ,
"seconds")

elapse = distance/light second

print (" or " , elapse , "seconds")

and here is the output.

$ python3 c0403.py
Light takes 8 minutes and 20 seconds
or 500.384778012685 seconds

Chapter 4 Ian D Chivers

Arithmetic 79

and the output is as expected. Note that Python has an exponentiation operator, unlike the C
family of languages (C, C++, Java, C#).

44 Example 4 - converting from Fahrenheit to centigrade.
Here is a simple program to convert from Fahrenheit to centigrade.

f = 75.0
c = 5/9*(£-32)
print(f , " Fahrenheit = ",c, " centigrade")

Here is the output.

$ python3 c0404.py
75.0 Fahrenheit = 23.88888888888889 centigrade

4.5 Example 5 - converting from Centigrade to Fahrenheit.
Here is a program to convert from centigrade to Fahrenheit.

c = 25
f = 32 + 9/5 * ¢
print(c , " centigrade = " , f , " Fahrenheit")

Here is the output.

$ python3 c0405.py
25 centigrade = 77.0 Fahrenheit

4.6 Example 6 - numbers getting too large - overflow
This program illustrates overflow in Python.
x = 10.0
for i in range(1l,320):
print (x)
x=x*10
Here is the output. Lines have deleted to reduce the page count.

10.0
100.0
1000.0
10000.0
100000.0
1000000.0

le+l6
le+17

le+304

le+305
9.999999999999999e+305
9.999999999999999e+306
9.999999999999998e+307
inf

inf

4.7 Example 7 - numbers getting too small - underflow
Here is the program.

Ian D Chivers Chapter 4

80 Arithmetic

x = 10.0
for i in range(1,330):
print (x)
x=x/10
Here is the output. Again lines have deleted to reduce the page count.

10.0

1.0

0.1

0.01

0.001

0.0001

le-05
1.0000000000000002e-06
1.0000000000000002e-07
1.0000000000000002e-08

.0000000000000021e-305
.0000000000000021e-3006
.000000000000002e-307
1.000000000000002e-308
1e-309

le-310

e

le-320
le-321
le-322
le-323
0.0

0.
0.
0.

O O O

4.8 Example 8 - subtraction of two similar values
Here is the program.

x = 1.00000002

y 1.00000001

zZ = X-Y

print (" {0:2.18f} ".format (x))
print {0:2.18f} ".format (y))
print {0:2.18f} ".format(z))

("
("
Here is the output.

$ python3 c0408.py
1.000000020000000100
1.000000009999999939
0.000000010000000161

4.9 Example 9 - summation
Here is the program.

Chapter 4 Ian D Chivers

Arithmetic 81

x1l = 1.0

x2 = 0.1

x3 = 0.01

x4 = 0.001

x5 = 0.0001

for i in range(1,10):
x1=x1+1.0

for i in range(1,10):
x2=x2+0.1

for i in range(1,10):
x3=x34+0.01

for i in range(1,10):
x4=x4+0.001

for i in range(1,10):
x5=x5+0.0001

print (" {0:2.18f} ".format (x1l))
print (" {0:2.18f} ".format (x2))
print (" {0:2.18f} ".format (x3))
print (" {0:2.18f} ".format (x4))
print (" {0:2.18f} ".format (x5))

Here is the output.

S python3 c0409.py
10.000000000000000000
0.999999999999999889
0.099999999999999992
0.010000000000000002
0.001000000000000000

4.10 Absolute and relative errors
In mathematics if p' is an approximation to p then the relative error is given by
lp— 7]
| Pl
and the absolute error is given by
lp— Pl
We will use this information in some of the problems.
411 Problems

1. The period of a pendulum is given by
2TC N lengt%gl

Write a Python program to evaluate this for a length of 10m.

2. Calculate the relative and absolute error for the difference of the two variables in exam-
ple 8. Subtracting 1.0000001 from 1.00000002 is 0.00000001.

2. In mathematics the following are all equal.
2 2

xT -y
XXX—)YXYy
(x=y)x(x+y)

Ian D Chivers Chapter 4

82 Arithmetic

Test out the equality of these expressions in Python. Try the following values
x =1.002, y = 1.001
x = 1.0002, y = 1.0001
x = 1.00002, y = 1.00001
3. For
p = 0.4e-4
and
papprox = 0.41e-4
calculate the relative and absolute errors. Repeat for two more values of p and papprox,
multiplying by 1.0e5 each time.

4. A geostationary satellite will be in orbit approximately 35,870 km from the earth. Calcu-
late the round trip time to the satellite and back. This will be the minimum delay for satel-
lite based broadband.

You can just change the distance in the example earlier in this chapter.
5. The Moon is approximately 384,400 km from the earth. What is the time delay here?

6. The following table gives the distances in 10° m from the Sun to the planets in the Solar
system.

Mercury 57.9 Venus 108.2
Earth 149.6 Mars 227.9
Jupiter 778.3 Saturn 1427.0
Uranus 2869.6 Neptune 4496.6
Pluto 5900.0

Use this information to find the greatest and least time taken to send a message from the
Earth to the other planets. Assume that all orbits are in the same plane, and circular - if it
was good enough for Copernicus it is good enough for us.

412 Bibliography

Some understanding of numerical analysis is essential for successful use of a programming
language. As Froberg says ‘numerical analysis is a science — computation is an art.” The
following are some of the more accessible books available.

Burden R.L., Douglas Faires J., Numerical Analysys, Brooks/Cole, 2001.

Source code on a cd is available in C, Fortran, Maple, Mathematica, Matlab and
Pascal. Good modern text.

Froberg C.E., Introduction to Numerical Analysis, Addison Wesley, 1969.

The short chapter on numerical computation is well worth a read, and it covers some
of the problems of conversion between number bases, and some of the errors that
are introduced when we compute numerically. The Samuel Johnson quote owes its
inclusion to Froberg!

http://grouper.ieee.org/groups/754/
The working group we site.

Chapter 4 Ian D Chivers

Arithmetic 83

IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, In-
stitute of Electrical and Electronic Engineers Inc.

The formal definition of IEEE 754.
Knuth D., Seminumerical Algorithms, Addison Wesley, 1969.

A more thorough and mathematical coverage than Wakerly. The chapter on posi-
tional number systems provides a very comprehensive historical coverage of the
subject. As Knuth points out the floating point representation for numbers is very
old, and is first documented around 1750 B.C. by Babylonian mathematicians. Very
interesting and worthwhile reading.

Sun, Numerical Computation Guide, SunPro, 1993.

Very good coverage of the numeric formats for IEEE Standard 754 for Binary Float-
ing Point Arithmetic. All SunPro compiler products support the features of the IEEE
754 standard .

Wakerly J.F., Microcomputer Architecture and Programming, Wiley, 1981.

The chapter on number systems and arithmetic is surprisingly easy. There is a cov-
erage of positional number systems, octal and hexadecimal number system conver-
sions, addition and subtraction of non-decimal numbers, representation of negative
numbers, two’s complement addition and subtraction, one’s complement addition
and subtraction, binary multiplication, binary division, bcd or binary coded decimal
representation and fixed and floating point representations. There is also coverage of
a number of specific hardware platforms, including DEC PDP-11, Motorola 68000,
Zilog 78000, TT 9900, Motorola 6809 and Intel 8086. A little old but quite interest-
ing nevertheless.

Wikipedia. There is a Wikipedia entry for IEEE 854.

Ian D Chivers Chapter 4

84 Arrays using the array module

5 Arrays using the array module

Most programming languages have to include language features that provide ways of ma-
nipulating tabular data. This is done most commonly by using arrays. Here is a basic de-
scription of the array in Python.

http://docs.python.org/library/array.html

This module defines an object type which can compactly represent an array of basic values:
characters, integers, floating point numbers. Arrays are sequence types and behave very
much like lists, except that the type of objects stored in them is constrained. The type is
specified at object creation time by using a type code, which is a single character. The in-
formation below is taken from 3.5.1 documentation. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes
b’ signed char int 1

'B' unsigned char int 1

u' Py UNICODE Unicode character 2 (1))
'h' signed short int 2

'H' unsigned short int 2

T signed int int 2

T unsigned int long 2

i\ signed long int 4

5 unsigned long long 4

'q' signed long long int 8(2)
'Q' unsigned long long int 8(2)
' float float 4

'd' double float 8
Note:

1. The 'u' typecode corresponds to Python’s unicode character. On narrow Unicode builds
this is 2-bytes, on wide builds this is 4-bytes. 'u' will be removed together with the rest of
the Py UNICODE API.

Deprecated since version 3.3, will be removed in version 4.0.

2. The 'q' and 'Q' type codes are available only if the platform C compiler used to build Py-
thon supports C long long, or, on Windows, int64

5.1 Array methods
The module defines the following type:
class array.array(typecodel, initializer])

Chapter 5 Ian D Chivers

Arrays using the array module 85

A new array whose items are restricted by typecode, and initialized from the op-
tional initializer value, which must be a list, string, or iterable over elements of the
appropriate type. Changed in version 2.4: Formerly, only lists or strings were ac-
cepted. If given a list or string, the initializer is passed to the new array’s fromlist(),
fromstring(), or fromunicode() method (see below) to add initial items to the array.
Otherwise, the iterable initializer is passed to the extend() method.
array.ArrayType

Obsolete alias for array. Array objects support the ordinary sequence operations of
indexing, slicing, concatenation, and multiplication. When using slice assignment,
the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and
may be used wherever buffer objects are supported. The following data items and
methods are also supported:

array.typecode

The typecode character used to create the array.
array.itemsize

The length in bytes of one array item in the internal representation.
array.append(x)

Append a new item with value x to the end of the array.
array.buffer info()

Return a tuple (address, length) giving the current memory address and the length in
elements of the buffer used to hold array’s contents. The size of the memory buffer
in bytes can be computed as array.buffer info()[1] * array.itemsize. This is occa-
sionally useful when working with low-level (and inherently unsafe) I/O interfaces
that require memory addresses, such as certain ioctl() operations. The returned num-
bers are valid as long as the array exists and no length-changing operations are ap-
plied to it.

Note: When using array objects from code written in C or C++ (the only way to ef-
fectively make use of this information), it makes more sense to use the buffer inter-
face supported by array objects. This method is maintained for backward compati-
bility and should be avoided in new code. The buffer interface is documented in
Buffers and Memoryview Objects.

array.byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2,
4, or 8 bytes in size; for other types of values, RuntimeError is raised. It is useful
when reading data from a file written on a machine with a different byte order.
array.count(x)
Return the number of occurrences of x in the array.
array.extend(iterable)

Append items from iterable to the end of the array. If iterable is another array, it
must have exactly the same type code; if not, TypeError will be raised. If iterable is
not an array, it must be iterable and its elements must be the right type to be ap-
pended to the array. Changed in version 2.4: Formerly, the argument could only be
another array.

Ian D Chivers Chapter 5

86 Arrays using the array module

array.fromfile(f, n)

Read n items (as machine values) from the file object f and append them to the end
of the array. If less than n items are available, EOFError is raised, but the items that
were available are still inserted into the array. f must be a real built-in file object;
something else with a read() method won’t do.

array.fromlist(list)

Append items from the list. This is equivalent to for x in list: a.append(x) except
that if there is a type error, the array is unchanged.

array.fromstring(s)

Appends items from the string, interpreting the string as an array of machine values
(as if it had been read from a file using the fromfile() method).

array.fromunicode(s)

Extends this array with data from the given unicode string. The array must be a type
'u' array; otherwise a ValueError is raised. Use array.fromstring(unicodestring.en-
code(enc)) to append Unicode data to an array of some other type.

array.index(x)
Return the smallest i such that i is the index of the first occurrence of x in the array.
array.insert(i, x)
Insert a new item with value x in the array before position i. Negative values are
treated as being relative to the end of the array.
array.pop([i])
Removes the item with the index i from the array and returns it. The optional argu-
ment defaults to -1, so that by default the last item is removed and returned.

array.read(f, n)
Deprecated since version 1.5.1: Use the fromfile() method.

Read n items (as machine values) from the file object f and append them to the end
of the array. If less than n items are available, EOFError is raised, but the items that
were available are still inserted into the array. f must be a real built-in file object;
something else with a read() method won’t do.

array.remove(x)

Remove the first occurrence of x from the array.
array.reverse()

Reverse the order of the items in the array.
array.tofile(f)

Write all items (as machine values) to the file object f.
array.tolist()

Convert the array to an ordinary list with the same items.
array.tostring()

Convert the array to an array of machine values and return the string representation
(the same sequence of bytes that would be written to a file by the tofile() method.)

array.tounicode()

Chapter 5 Ian D Chivers

Arrays using the array module 87

Convert the array to a unicode string. The array must be a type 'u' array; otherwise a
ValueError is raised. Use array.tostring().decode(enc) to obtain a unicode string
from an array of some other type.

array.write(f)
Deprecated since version 1.5.1: Use the tofile() method. Write all items (as machine
values) to the file object f.

We will only look at a small number of examples in this chapter.

5.2 Arrray size known at compile time
5.2.1 Example 1 - array and conventional for loop syntax

import array

n=12

month=0

sum=0.0

average=0.0

rainfall = array.array('d' , [3.1 , o ,
, 2.2 , 1.8 , 2.2 , 2.7 , 2.9 , 3.1 , 3.1
for month in range (0,n):

sum = sum + rainfall[month]
average = sum/n
print (" Sum = ",sum)
print (" Average = " , average)

The first thing we need to do is make the array module available, which we do with the im-
port statement.

The next thing we do is set the size of the array. In the next example we will calculate this
using on of the array methods.

We then declare and initialise one integer variable (month) and two float variables, sum and
average.

We then declare the array rainfall and create it using an array constructor and provide initial
values for the array.

an

1

is often written in a programming language as a loop over an array. In Python we start at
Zero.

A summation

We then calculate the sum, looping over each element of the array, using Python's for loop
construct.

We will look in more detail at the for statement in a later chapter. Here is some data taken
from the monthly rainfall figures for London.

Month Month as integer Index Rainfall value
January 1 0 3.1
February 2 1 2.0
March 3 2 24
April 4 3 2.1

Ian D Chivers Chapter 5

88 Arrays using the array module

Month Month as integer Index Rainfall value
May 5 4 22
June 6 5 2.2
July 7 6 1.8
August 8 7 2.2
September 9 8 2.7
October 10 9 2.9
November 11 10 3.1
December 12 11 3.1

The measurements are in inches.

5.2.2 Example 2 - using the len function to determine the size of array
This example is a simple variant of the first.

import array
month=0
sum=0.0
average=0.0
rainfall = array.array('d' , [3.1 , 2.0 ,
, 2.2 , 1.8 , 2.2 , 2.7 , 2.9, 3.1 , 3.1
n = len(rainfall)
for month in range (0,n):
sum = sum + rainfall[month]
average = sum/n
print (" Sum = ", sum)
print (" Average = " , average)

2.4 , 2.1, 2.2
1)

We use the len function in this example.

5.3 Array size known at run time

In this example we input the array size at run time.

5.3.1 Example 3 - reading in the array size
Here is the example

import array
i =20
sum = 0
n = int(input (" Type in the size of the array: "))
temp = [0]*n
X = array.array('L', temp)
for i in range (0,n):
x[i]=1
sum=sum+x [1i]
print (" Sum of array elements is: ", sum)

The second argument to array.array must be iterable. We have used a temporary iterable ob-
ject temp to set the array size dynamically at run time.

Chapter 5 Ian D Chivers

Arrays using the array module 89

54 Summary

The array data type in this chapter is fine for one dimensional arrays. For mathematical
multidimensional arrays Python provides NumPy. This is covered in the next chapter.

5.5 Problems

1. Compile and run the examples.

2. Convert the rainfall measurements to mm. What is the sum and average?

3. Visit
http://www.metoffice.gov.uk/public/weather/climate-his-
toric/#?tab=climateHistoric

The following is an alphabetical list of sites.
e aberporth
e armagh
e Dballypatrick
e bradford
e braemar
e camborne
e cambridge
o cardiff
e chivenor
e cwmystwyth
e dunstaffnage
e durham
e castbourne
e eskdalemuir

e heathrow

e hurn
e lerwick
e leuchars

e lowestoft
e manston
e nairn

e newtonrigg

e oxford
e paisley
e ringway

® rossonwye
e shawbury
e sheffield

Ian D Chivers Chapter 5

90 Arrays using the array module

e southampton

e stornoway

e suttonbonington
e tiree

e valley

e waddington

e whitby

e wickairport

e yeovilton

Chose a site and a year and replace the rainfall measurements in the rainfall example with
your data.

Is your site and year wetter or dryer than London?

Chapter 5 Ian D Chivers

Arrays using the Numpy module 91

6 Arrays using the Numpy module

Here is the Numpy site.
http://www.numpy.org/

and here is their description about Numpy:

e NumPy is the fundamental package for scientific computing with Python. It con-
tains among other things:

e a powerful N-dimensional array object
e sophisticated (broadcasting) functions
e tools for integrating C/C++ and Fortran code

e useful linear algebra, Fourier transform, and random num-
ber capabilities

e Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be defined.
This allows NumPy to seamlessly and speedily integrate with a wide variety of
databases.

e Numpy is licensed under the BSD License, enabling reuse with few restrictions.
The following has been taken from the wikipedia entry.
e Introduction

e NumPy is an extension to the Python programming lan-
guage, adding support for large, multi-dimensional arrays
and matrices, along with a large library of high-level
mathematical functions to operate on these arrays. The an-
cestor of NumPy, Numeric, was originally created by Jim
Hugunin with contributions from several other developers.
In 2005, Travis Oliphant created NumPy by incorporating
features of the competing Numarray into Numeric, with
extensive modifications. NumPy is open source and has
many contributors.

e Traits

e NumPy targets the CPython reference implementation of
Python, which is a non-optimizing bytecode interpreter.
Mathematical algorithms written for this version of Python
often run much slower than compiled equivalents. NumPy
address the slowness problem partly by providing multidi-
mensional arrays and functions and operators that operate
efficiently on arrays, requiring (re)writing some code,
mostly inner loops using NumPy. Thus any algorithm that
can be expressed primarily as operations on arrays and
matrices can run almost as quickly as the equivalent C
code.[1]

e Using NumPy in Python gives functionality comparable to
MATLAB since they are both interpreted, and they both

Ian D Chivers Chapter 6

92

Arrays using the Numpy module

allow the user to write fast programs as long as most oper-
ations work on arrays or matrices instead of scalars. In
comparison, MATLAB boasts a large number of additional
toolboxes, notably Simulink; whereas NumPy is intrinsi-
cally integrated with Python, a more modern, complete,
and open source programming language. Moreover, com-
plementary Python packages are available; SciPy is a li-
brary that adds more MATLAB-like functionality and
Matplotlib is a plotting package that provides
MATLAB-like plotting functionality. Internally, both
MATLAB and NumPy rely on BLAS and LAPACK for
efficient linear algebra computations.

e The ndarray data structure

The core functionality of NumPy is its "ndarray", for n-di-
mensional array, data structure. These arrays are strided
views on memory.[2] In contrast to Python's built-in list
data structure (which, despite the name, is a dynamic ar-
ray), these arrays are homogeneously typed: all elements
of a single array must be of the same type.

Such arrays can also be views into memory buffers allo-
cated by C/C++. Cython and Fortran extensions to the
CPython interpreter without the need to copy data around,
giving a degree of compatibility with existing numerical li-
braries. This functionality is exploited by the SciPy pack-
age, which wraps a number of such libraries (notably
BLAS and LAPACK). NumPy has built-in support for
memory-mapped ndarrays.[2]

e Limitations

NumPy's arrays must be views on contiguous memory
buffers. A replacement package called Blaze attempts to
overcome this limitation.[3]

Algorithms that are not expressible as a vectorized opera-
tion will typically run slowly because they must be imple-
mented in "pure Python", while vectorization may increase
memory complexity of some operations from constant to
linear, because temporary arrays must be created that are
as large as the inputs. Runtime compilation of numerical
code has been implemented by several groups to avoid
these problems; open source solutions that interoperate
with NumPy include scipy.weave, numexpr[4] and
Numba.[5] Cython is a static-compiling alternative to
these.

e History

Chapter 6

The Python programming language was not initially de-
signed for numerical computing, but attracted the attention

Ian D Chivers

Arrays using the Numpy module

of the scientific/engineering community early on, so that a
special interest group called matrix-sig was founded in
1995 with the aim of defining an array computing pack-
age. Among its members was Python designer/maintainer
Guido van Rossum, who implemented extensions to Py-
thon's syntax (in particular the indexing syntax) to make
array computing easier.[6] An implementation of a matrix
package was completed by Jim Fulton, then generalized by
Jim Hugunin to become Numeric,[6] also variously called
Numerical Python extensions or NumPy.[7][8] Hugunin, a
graduate student at MIT,[8]:10 joined CNRI to work on
JPython in 1997[6] leading Paul Dubois of LLNL to take
over as maintainer.[8]:10 Other early contributors include
David Ascher, Konrad Hinsen and Travis Oliphant.[8]:10

A new package called Numarray was written as a more
flexible replacement for Numeric.[2] Like Numeric, it is
now deprecated.[9] Numarray had faster operations for
large arrays, but was slower than Numeric on small
ones,[citation needed] so for a time both packages were
used for different use cases. The last version of Numeric
v24.2 was released on 11 November 2005 and numarray
v1.5.2 was released on 24 August 2006.[10]

There was a desire to get Numeric into the Python stan-
dard library, but Guido van Rossum (the author of Python)
was quite clear that the code was not maintainable in its
state then.[when?][citation needed]

In early 2005, NumPy developer Travis Oliphant wanted
to unify the community around a single array package and
ported Numarray's features to Numeric, releasing the result
as NumPy 1.0 in 2006.[2] This new project was part of
SciPy. To avoid installing the large SciPy package just to
get an array object, this new package was separated and
called NumPy.

The release version 1.5.1 of NumPy is compatible with
Python versions 2.4-2.7 and 3.1-3.2. Support for Python 3
was added in 1.5.0.[11] In 2011, PyPy started development
on an implementation of the numpy API for PyPy.[12] It
is not yet fully compatible with NumPy.[13]

e References

1. "SciPy PerformancePython". Retrieved 2006-06-25.

2. Stéfan van der Walt, S. Chris Colbert and Gaél
Varoquaux (2011). "The NumPy array: a structure for effi-
cient numerical computation". Computing in Science and
Engineering (IEEE).

Ian D Chivers

93

Chapter 6

94 Arrays using the Numpy module

3. "Blaze 0.4.1 Documentation". Blaze. Retrieved 8 March
2014.

e 4. Francesc Alted. "numexpr". Retrieved 8 March 2014.
e 5."Numba". Retrieved 8 March 2014.

e 6. Millman, K. Jarrod; Aivazis, Michael (2011). "Python
for Scientists and Engineers". Computing in Science and
Engineering 13 (2): 9-12.

e 7. Travis Oliphant (2007). "Python for Scientific Comput-
ing" (PDF). Computing in Science and Engineering.

e 8. David Ascher; Paul F. Dubois; Konrad Hinsen; Jim
Hugunin; Travis Oliphant (1999). "Numerical Python"
(PDF).

e 9. "Numarray Homepage". Retrieved 2006-06-24.
e 10. "NumPy Sourceforge Files". Retrieved 2008-03-24.
e 1. "NumPy 1.5.0 Release Notes". Retrieved 2011-04-29.

e 12. "PyPy Status Blog: Numpy funding and status update".
Retrieved 2011-12-22.

e 13. "NumPyPy Status". Retrieved 2013-10-14.

e We next have a look at the main numpy site.

6.1 Documentation
Here is an extract from the numpy user guide.

This guide is intended as an introductory overview of NumPy and explains how to
install and make use of the most important features of NumPy. For detailed refer-
ence documentation of the functions and classes contained in the package, see the
NumPy Reference.

Warning:

This “User Guide” is still a work in progress; some of the material is not organized,
and several aspects of NumPy are not yet covered sufficient detail. We are an open
source community continually working to improve the documentation and eagerly
encourage interested parties to contribute. For information on how to do so, please
visit the NumPy doc wiki.

More documentation for NumPy can be found on the numpy.org website.
Thanks!

Introduction ?What is NumPy?

Building and installing NumPy

How to find documentation

Numpy basics ?Data types

Array creation

I/O with Numpy

Indexing

Broadcasting

Chapter 6 Ian D Chivers

Arrays using the Numpy module 95

Byte-swapping

Structured arrays

Subclassing ndarray

Performance

Miscellaneous ?IEEE 754 Floating Point Special Values
How numpy handles numerical exceptions
Examples

Interfacing to C

Interfacing to Fortran:

Interfacing to C++:

Methods vs. Functions

Using Numpy C-API ?How to extend NumPy
Using Python as glue

Writing your own ufunc

Beyond the Basics

We recommend using this site when working with numpy arrays.

6.2 Creating arrays
There are 5 general mechanisms for creating arrays:
e Conversion from other Python structures (e.g., lists, tuples)
e Intrinsic numpy array array creation objects (e.g., arange, ones, zeros, etc.)
e Reading arrays from disk, either from standard or custom formats
e C(reating arrays from raw bytes through the use of strings or buffers
e Use of special library functions (e.g., random)
Numpy supports a much greater variety of numerical types than Python does.

Data type Description

bool Boolean (True or False) stored as a byte

int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C ssize t; normally either int32 or int64)
int8 Byte (-128 to 127)

intl6 Integer (-32768 to 32767)

int32 Integer (-2147483648 to 2147483647)

int64 Integer (-9223372036854775808 to 9223372036854775807)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 4294967295)

uint64 Unsigned integer (0 to 18446744073709551615)

float Shorthand for float64.

floatl6 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

Ian D Chivers Chapter 6

96 Arrays using the Numpy module

float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex Shorthand for complex128.

complex64 Complex number, represented by two 32-bit floats (real and imaginary com-
ponents)

complex128 Complex number, represented by two 64-bit floats (real and imaginary com-
ponents)

We will use some of these methods in the examples below.

6.3 Simple 1 and 2 d array examples

The first set of examples are a simple rewrite of the examples in the previous chapter. We
then move on to two dimensional examples.

6.3.1 Example 1 - simple rainfall example

import numpy as np

n=12

month=0

sum=0.0

average=0.0

rainfall = np.array([3.1 , 2.0 , 2.4 , 2.1 , 2.2 , 2.2 ,
1.8 , 2.2 , 2.7 , 2.9, 3.1 , 3.1 1)

for month in range (0,n):

sum = sum + rainfall [month]
average = sum/n
print (" Sum = ",sum)
print (" Average = " , average)

In this example we store the array size in the variable n. We then loop over the array to cal-
culate the sum.

6.3.2 Example 2 - variant of one using len intrinsic function

import numpy as np

month=0

sum=0.0

average=0.0

rainfall = np.array([3.1 , 2.0 , 2.4 , 2.1 , 2.2 , 2.2 ,
1.8 , 2.2 , 2.7 , 2.9, 3.1, 3.1 1)

n = len(rainfall)
for month in range (0,n):

sum = sum + rainfall[month]
average = sum/n
print (" Sum = ", sum)
print (" Average = " , average)

In this example we use the len() method to calculate the array size.
6.3.3 Example 3 - setting the size at run time

import numpy as np
i =20
sum = 0

Chapter 6 Ian D Chivers

Arrays using the Numpy module 97

n = int (input (" Type in the size of the array: "))
X = np.empty([n],dtype=np.int32)
for i in range (0,n):
x[1]=1
sum=sum+x [1]
print (" Sum of array elements is: ",sum)

In this example we read in the array size at run time, and use the numpy.empty method to
create an array of 32 bit integers.

6.3.4 Example 4 - two d array using numpy.zeros method

import numpy as np

nr = 3

nc = 3

X = np.zeros([nr,nc] , dtype=np.int32)

print ("\n 3 by 3 matrix, using numpy.zeros () method \n\n")
print (x)

Here we zero use the numpy.zeros() method to create the array and initialise to zero.
6.3.5 Example 5 - two d array using numpy.array() method

import numpy as np

nr = 3

nc = 3

x = np.array([[1,2,3] , [4,5,61 , [7,8,9]11])

print ("\n 3 by 3 matrix, initialisation using numpy.array ()
method\n\n")

print (x)

This example uses the numpy.array() method.

6.3.6 Example 6 - two d array and the numpy.sum() method

In this example we illustrate the use of the numpy.sum method with a two d array. We also
show whole array assignment in Python. We then compare with a C++ version to illustrate
the power of Python.

import numpy as np
nr =
nc =
rsum np.zeros ([nr],dtype=np.int32)

csum = np.zeros([nc],dtype=np.int32)

x = np.array([[1,2,3] , [4,5,6] , [7,8,9]])
csum=np.sum(x,axis=0)

rsum=np.sum(x,axis=1)

print ("\n 3 * 3 matrix \n\n",x)

print ("\n Row sum = ", rsum)

print (" Column sum = ",csum)

I w w

Here is the output.

3 * 3 matrix

[[1 2 3]

Ian D Chivers Chapter 6

98 Arrays using the Numpy module

[4 5 6]
[7 8 91]
Row sum = [6 15 24]
Column sum = [12 15 18]

Here is the C++ implementation.

#include <iostream>
using namespace std;

int main()

{
const int nrows=3;
const int ncols=3;

int r;

int c;

int x[nrows] [ncols] = {{1,2,3},
{41516}1
{71819}};

int rsum[nrows] = {0,0,0};

int csum[ncols] = {0,0,0};

cout << " Row sum "oy

for (r=0;r<nrows;r++)
{
for (c=0;c<ncols;c++)
{
rsum[r]=rsum[rl+x[r][c];
}

cout << rsum[r] << " " ;

cout << endl;
cout << " Column sum " ;

for (c=0;c<ncols;c++)
{

for (r=0;r<nrows;r++)
{

csum[c]=csum[c]+x[r] [c];
}

cout << csum[c] << " ";

cout << endl;

Chapter 6 Ian D Chivers

Arrays using the Numpy module 99

cout << "\n 3 * 3 matrix plus row and column sums\n\n" ;

for (r=0;r<nrows;r++)
{
for (c=0;c<ncols;c++)
{
cout.width (2);
cout << x[r][c] << " ";

}

cout << rsum[r] << endl;

for (c=0;c<ncols;c++)
cout << csum[c] << " ";
cout << endl;

return (0) ;

}
Here is the C++ output.

c:\document\python\examples>c0606
Row sum 6 15 24
Column sum 12 15 18

3 * 3 matrix plus row and column sums

1 2 36

4 5 6 15

7T 8 9 24
12 15 18

The Python version is obviously a lot simpler.
We have a numpy.sum() method which enables us to do the summation without hav-
ing to use loops.
We also have whole array assignment as the numpy.sum() method can return an ar-
ray.
One of the problems is to modify the Python version to produce the same output as the C++
version.
Here are two variants of this showing breaking a line at a white space point and using ex-
plicit continuation symbols.

White space.
import numpy as np

nr = 3
nc = 3
rsum = np.zeros([nr],dtype=np.int32)
csum = np.zeros([nc],dtype=np.int32)
x = np.array([[1,2,3] ,

[(4,5,6] ,

[7,8,911)

Ian D Chivers Chapter 6

100 Arrays using the Numpy module

csum=np.sum(x,axis=0)
rsum=np.sum(x,axis=1)

print ("\n 3 * 3 matrix \n\n",x)
print ("\n Row sum = ", rsum)
print (" Column sum = ",csum)
Explicit continuation

import numpy as np

nr = 3
nc = 3
rsum = np.zeros([nr],dtype=np.int32)
csum = np.zeros([nc],dtype=np.int32)
x = np.array([[1,2,3] , \

[(4,5,61 , \

[7,8,911])

)

csum=np.sum(x,axis=0
rsum=np.sum(x,axis=1)

print ("\n 3 * 3 matrix \n\n",x)
print ("\n Row sum = ", rsum)
print (" Column sum = ",csum)

6.4 Simple 1 and 2 d array slicing

Numpy arrays support slicing. The basic slice syntax is start:end:increment, where start, end
and increment are all integers. We will look several examples to illustrate slicing.

6.4.1 Example 7 - simple one d slicing

Here is the program.

import numpy as np
x=np.array([0,1,2,3,4,5,6,7,8,9,10])
even = np.empty([6],dtype=np.int32)
odd = np.empty([5],dtype=np.int32)
even=x[0:11:2]

odd =x[1:11:2]

print (even)

print (odd)

Here is the output.

$ python3 c0607.py
[O 2 4 6 8 10]
[1 3 5 7 9]

The slice syntax is 0:11:2 in the even example, and 1:11:2 in the odd example.

6.4.2 Example 8 - two d slicing
Here is the program.

import numpy as np

nr = 3

nc = 3

x = np.array([[1,2,3] , [4,5,61 , [7,8,9]11])
col = np.zeros([nr],dtype=np.int32)
row = np.zeros([nc],dtype=np.int32)

diagonal = np.zeros([nc],dtype=np.int32)

Chapter 6 Ian D Chivers

Arrays using the Numpy module

col=x[0:nr,1]

row=x[1l,0:nc]
diagonal=np.diagonal (x)

print ("\n 3 * 3 matrix \n\n",x)

print ("\n Column = ",col)
print ("\n Row = ", row)
print ("\n Diagonal = ",diagonal)

Here is the output.

$ python3 c0608.py

3 * 3 matrix

[[1 2 3]
[4 5 6]
[7 8 91]
Column = [2 5 8]
Row = [4 5 6]
Diagonal = [1 5 9]

101

x[0:nr,1] selects column 1, and x[1,0:nc] selects row 1. There is a diagonal method to ex-

tract the diagonal elements of the 3*3 matrix.

6.4.3 Example 9 - arithmetic and slicing

Here is the example.

import numpy as np

nr = 3

nc = 3

x = np.array([[1,2,3] , [4,5,6]1 , [7,8,911)
print ("\n x before \n\n", x)
x[0:nr,1]=x[0:nr,1]1*3

print ("\n x after \n\n",x)

Here is the output.

$ python3 c0609.py

x before

[[1 2 3]

[4 5 6

[7 8 9711

x after

([l 1 6 3]
[4 15 0]

Ian D Chivers

Chapter 6

102 Arrays using the Numpy module
[7 24 911

and we have multiplied the whole middle column by 3.

6.5 Miscellaneous examples: aggregate, reshape, copies and views
The next example look at some of the built in aggregate functions available in Numpy.

6.5.1 Example 10 - Aggregate usage
Here is the source code.

import numpy as np
nr =

np.zeros([nr],dtype=np.int32)

csum = np.zeros|([nc],dtype=np.int32)

x = np.array([[1,2,3] , [4,5,6] , [7,8,9]])
rsum=np.sum(x,axis=0)

csum=np.sum(x,axis=1)

print ("\n 3 * 3 matrix \n\n",x)

print ("\n Row sum = ", rsum)

print (" Column sum = ",csum)

print (x.

print (x

.max ()

sum ())

)

print (x.mean (

(
(
(
print (x.min ()
(
(
print (x.std()

)
)
)
)

Here is the output.

$ 3 * 3 matrix

[12 15 18]
[6 15 24]

Row sum =
Column sum
45
1
9
5.0
2.58198889747

6.5.2 Example 11 - Shape manipulation
Python has a reshape intrinsic. Here is an example.

import numpy as np

X = np.array([[1,2,3] ,
y = x.reshape(1l,9)

z = x.reshape(9,1)
print (x)

print (x.shape)

[4,5,6] , [7,8,9]])

Chapter 6 Ian D Chivers

Arrays using the Numpy module

print (x.size)
print (y)

print (y.shape)
print(y.size)
print (z)

print (z.shape)
print (z.size)

Here is the output.

—

O o J oy U1 W N =
—_ e e e e e L L =

O ~
O
~
[——

6.5.3 Example 12 - Copies or views
Look at the following example.

import numpy as np

x = np.array([[1,2,3] , [4,5,6] , [7,8,9]])
y = X

print (x)

print (y)

v[2,2]=99

print (x)

print (y)

<

Here is the output.

$ python3 numpy 02.py

[[1 2 3]
[4 5 6]
[7 8 9]]
[[1 2 3]
[4 5 6]
[7 8 9]]
(L 1 2 3]
[4 5 6]

Ian D Chivers

103

Chapter 6

104 Arrays using the Numpy module

991]

[

RO |
o o N o
O o W O

[
[
[
[9

]
]
]
1]

There is a copy method if we need a copy.

6.6 Numpy documentation

There are 2 pdfs that are available.

Numpy User Guide, 107. Free download.
Numpy Reference Manual, 1528. Free download.

6.7 Problems

1. Rewrite example 1 to use the sum method.

2. Rewrite example 6 to produce the similar output to the C++ version.
3. Here is a table of exam results.

Name Physics Maths Biology History English
Fowler L. 50 47 28 &9 30
Barron LW 37 67 34 65 68
Warren J. 25 45 26 48 10
Mallory D. 89 56 33 45 30
Codd S. 68 78 38 76 98

French

46

98

36

65

65

Write a program that initialises a 5 * 6 array with the data as shown above. Then scale the
biology data by 2.5. Then generate the people and subject sums. When you have done this

calculate the people and subject averages.
Print out the original matrix with the row and column sums added.

4. Choose another site from the Met Office list. Use the sum intrinsic. Calculate the sum

and average.

Chapter 6 Ian D Chivers

Text in Python: Strings 105

7 Text in Python: Strings

7.1 Introduction
The following information is taken from
https://docs.python.org/3.5/1ibrary/stdtypes.html#str

Text in Python is provided by the text sequence type - str, Strings are immutable sequences
of Unicode code points. String literals are written in a variety of ways:

e Single quotes: 'allows embedded "double" quotes'

e Double quotes: "allows embedded 'single' quotes".

nmn

e Triple quoted: ""Three single quotes™, """Three double quotes
Triple quoted strings may span multiple lines - all associated whitespace will be included in
the string literal.
String literals that are part of a single expression and have only whitespace between them
will be implicitly converted to a single string literal. That is, ("spam " "eggs") == "spam
eggs".
Strings may also be created from other objects using the str constructor.
Since there is no separate “character” type, indexing a string produces strings of length 1.
That is, for a non-empty string s, s[0] == s[0:1].
There is also no mutable string type, but str.join() or i0.StringlO can be used to efficiently
construct strings from multiple fragments.

7.2 String Methods
Strings implement all of the common sequence operations, along with the additional meth-
ods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibil-
ity and customization (see str.format(), Format String Syntax and String Formatting) and the
other based on C printf style formatting that handles a narrower range of types and is
slightly harder to use correctly, but is often faster for the cases it can handle (printf-style
String Formatting).

The Text Processing Services section of the standard library covers a number of other mod-
ules that provide various text related utilities (including regular expression support in the re
module).

str.capitalize()
Return a copy of the string with its first character capitalized and the rest
lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless
matching.

str.center(width[, fillchar])

Return centered in a string of length width. Padding is done using the specified
fillchar (default is an ASCII space). The original string is returned if width is less
than or equal to len(s).

str.count(subl, start[, end]])

Ian D Chivers Chapter 7

106 Text in Python: Strings

Return the number of non-overlapping occurrences of substring sub in the range
[start, end]. Optional arguments start and end are interpreted as in slice notation.

str.encode(encoding="utf-8", errors="strict")

Return an encoded version of the string as a bytes object. Default encoding is 'utf-8'.
errors may be given to set a different error handling scheme. The default for errors
is 'strict', meaning that encoding errors raise a UnicodeError. Other possible values
are 'ignore', 'replace’, 'xmlcharrefreplace', 'backslashreplace' and any other name reg-
istered via codecs.register error(), see section Error Handlers. For a list of possible
encodings, see section Standard Encodings.

str.endswith(suffix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suf-
fix can also be a tuple of suffixes to look for. With optional start, test beginning at
that position. With optional end, stop comparing at that position.

str.expandtabs(tabsize=8)

Return a copy of the string where all tab characters are replaced by one or more
spaces, depending on the current column and the given tab size. Tab positions occur
every tabsize characters (default is 8, giving tab positions at columns 0, 8, 16 and so
on). To expand the string, the current column is set to zero and the string is exam-
ined character by character. If the character is a tab (\t), one or more space charac-
ters are inserted in the result until the current column is equal to the next tab posi-
tion. (The tab character itself is not copied.) If the character is a newline (\n) or re-
turn (\r), it is copied and the current column is reset to zero. Any other character is
copied unchanged and the current column is incremented by one regardless of how
the character is represented when printed.

str.find(subl, start[, end]])

Return the lowest index in the string where substring sub is found, such that sub is
contained in the slice s[start:end]. Optional arguments start and end are interpreted
as in slice notation. Return -1 if sub is not found.

str.format(*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can
contain literal text or replacement fields delimited by braces {}. Each replacement
field contains either the numeric index of a positional argument, or the name of a
keyword argument. Returns a copy of the string where each replacement field is re-
placed with the string value of the corresponding argument.

str.format_map(mapping)

Similar to str.format(**mapping), except that mapping is used directly and not cop-
ied to a dict. This is useful if for example mapping is a dict subclass:

str.index(subl, start[, end]])
Like find(), but raise ValueError when the substring is not found.
str.isalnum()

Return true if all characters in the string are alphanumeric and there is at least one
character, false otherwise. A character c is alphanumeric if one of the following re-
turns True: c.isalpha(), c.isdecimal(), c.isdigit(), or c.isnumeric().

str.isalpha()

Chapter 7 Ian D Chivers

Text in Python: Strings 107

Return true if all characters in the string are alphabetic and there is at least one char-
acter, false otherwise. Alphabetic characters are those characters defined in the
Unicode character database as “Letter”, i.e., those with general category property
being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from the
“Alphabetic” property defined in the Unicode Standard.

str.isdecimal()

Return true if all characters in the string are decimal characters and there is at least
one character, false otherwise. Decimal characters are those from general category
“Nd”. This category includes digit characters, and all characters that can be used to
form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

str.isdigit()
Return true if all characters in the string are digits and there is at least one character,
false otherwise. Digits include decimal characters and digits that need special han-
dling, such as the compatibility superscript digits. Formally, a digit is a character
that has the property value Numeric_ Type=Digit or Numeric Type=Decimal.

str.isidentifier()
Return true if the string is a valid identifier according to the language definition,
section Identifiers and keywords.

str.islower()
Return true if all cased characters [4] in the string are lowercase and there is at least
one cased character, false otherwise.

str.isnumeric()
Return true if all characters in the string are numeric characters, and there is at least
one character, false otherwise. Numeric characters include digit characters, and all
characters that have the Unicode numeric value property, e.g. U+2155, VULGAR
FRACTION ONE FIFTH. Formally, numeric characters are those with the property
value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric Type=Numeric.

str.isprintable()
Return true if all characters in the string are printable or the string is empty, false
otherwise. Nonprintable characters are those characters defined in the Unicode char-
acter database as “Other” or “Separator”, excepting the ASCII space (0x20) which is
considered printable. (Note that printable characters in this context are those which
should not be escaped when repr() is invoked on a string. It has no bearing on the
handling of strings written to sys.stdout or sys.stderr.)

str.isspace()
Return true if there are only whitespace characters in the string and there is at least
one character, false otherwise. Whitespace characters are those characters defined in
the Unicode character database as “Other” or “Separator” and those with
bidirectional property being one of “WS”, “B”, or “S”.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for
example uppercase characters may only follow uncased characters and lowercase
characters only cased ones. Return false otherwise.

str.isupper()

Ian D Chivers Chapter 7

108 Text in Python: Strings

Return true if all cased characters [4] in the string are uppercase and there is at least
one cased character, false otherwise.

str.join(iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A

TypeError will be raised if there are any non-string values in iterable, including
bytes objects. The separator between elements is the string providing this method.

str.ljust(width[, fillchar])
Return the string left justified in a string of length width. Padding is done using the
specified fillchar (default is an ASCII space). The original string is returned if width
is less than or equal to len(s).
str.lower()
Return a copy of the string with all the cased characters [4] converted to lowercase.
str.Istrip([chars])
Return a copy of the string with leading characters removed. The chars argument is
a string specifying the set of characters to be removed. If omitted or None, the chars
argument defaults to removing whitespace. The chars argument is not a prefix;
rather, all combinations of its values are stripped:
static str.maketrans(x[, y[, z]])
This static method returns a translation table usable for str.translate().
str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part
before the separator, the separator itself, and the part after the separator. If the sepa-
rator is not found, return a 3-tuple containing the string itself, followed by two
empty strings.
str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If
the optional argument count is given, only the first count occurrences are replaced.
str.rfind(subl, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is
contained within s[start:end]. Optional arguments start and end are interpreted as in
slice notation. Return -1 on failure.
str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.
str.rjust(width[, fillchar])

Return the string right justified in a string of length width. Padding is done using the
specified fillchar (default is an ASCII space). The original string is returned if width
is less than or equal to len(s).
str.rpartition(sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part
before the separator, the separator itself, and the part after the separator. If the sepa-
rator is not found, return a 3-tuple containing two empty strings, followed by the
string itself.

str.rsplit(sep=None, maxsplit=-1)

Chapter 7 Ian D Chivers

Text in Python: Strings 109

Return a list of the words in the string, using sep as the delimiter string. If maxsplit
is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified
or None, any whitespace string is a separator. Except for splitting from the right,
rsplit() behaves like split() which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is
a string specifying the set of characters to be removed. If omitted or None, the chars

argument defaults to removing whitespace. The chars argument is not a suffix;
rather, all combinations of its values are stripped:

str.split(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit
is given, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or -1, then there is no limit on the number of
splits (all possible splits are made).

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are
not included in the resulting list unless keepends is given and true.
str.startswith(prefix[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be

a tuple of prefixes to look for. With optional start, test string beginning at that posi-
tion. With optional end, stop comparing string at that position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The
chars argument is a string specifying the set of characters to be removed. If omitted
or None, the chars argument defaults to removing whitespace. The chars argument is
not a prefix or suffix; rather, all combinations of its values are stripped:

str.swapcase()

Return a copy of the string with uppercase characters converted to lowercase and
vice versa. Note that it is not necessarily true that s.swapcase().swapcase() == s.

str.title()

Return a titlecased version of the string where words start with an uppercase charac-
ter and the remaining characters are lowercase.

str.translate(table)

Return a copy of the string in which each character has been mapped through the
given translation table. The table must be an object that implements indexing via
__getitem__ (), typically a mapping or sequence. When indexed by a Unicode ordi-
nal (an integer), the table object can do any of the following: return a Unicode ordi-
nal or a string, to map the character to one or more other characters; return None, to
delete the character from the return string; or raise a LookupError exception, to map
the character to itself.

str.upper()
Return a copy of the string with all the cased characters [4] converted to uppercase.
Note that str.upper().isupper() might be False if s contains uncased characters or if

Ian D Chivers Chapter 7

110 Text in Python: Strings

the Unicode category of the resulting character(s) is not “Lu” (Letter, uppercase),
but e.g. “Lt” (Letter, titlecase).

str.zfill(width)

Return a copy of the string left filled with ASCII '0' digits to make a string of length
width. A leading sign prefix ('+'/'-") is handled by inserting the padding after the sign
character rather than before. The original string is returned if width is less than or
equal to len(s).

As can be seen there are a lot of string methods. We will look at a small number of exam-
ples using some of the above.

7.3 String example 1 - initialisation, len and find methods
The first example illustrates the following string concepts

e string initialisation

e the use of the len() internal method

e astring as an array

e the find method

e sections or slices of a string
Here is the example.

name = "Ian Chivers"
1=1en (name)
for i in range(0,1):
print (name[i],end="")
print ()
blank=name.find (" ")
print (name[0:blank])
print (name[blank+1:17)

Here is the output.

$ python3 c0701.py
Ian Chivers

Tan

Chivers

7.4 String example 2 - concatenation and split method
This example shows

e string concatenation

e the use of the split()method

Here is the program.

linel = "The important thing about a language, is not so"
line2 = "much what features the language posses, but"

line3 = "the features it does posses, are sufficient, to"
lined = "support the desired programming styles, in the"
line5 = "desired application areas."

total = linel + " " 4+ line2 + " " 4+ 1line3 + " " 4+ 1lined +
" " + line5

Chapter 7 Ian D Chivers

Text in Python: Strings 111

print (total)

words=total.split ()

for word in words:
print (word)

Here is the output.

$ python3 c0702.py

The important thing about a language, is not so much what
features the language posses, but the features it does pos-
ses, are sufficient, to support the desired programming
styles, 1in the desired application areas.
The

important

thing

about

a

language,

is

not

SO

much

what

features

the

language

posses,

but

the

features

it

does

posses,

are

sufficient,

to

support

the

desired

programming

styles,

in

the

desired

application

areas.

The next example use regular expressions to break the text into phrases broken at punctua-
tion.

Ian D Chivers Chapter 7

112 Text in Python: Strings

7.5 String example 3 - split variant
Here is the source.

import re

def main () :

linel = "The important thing about a language, 1is not so"

line2 = "much what features the language possess, but"

line3 = "the features it does possess, are sufficient, to"

line4 = "support the desired programming styles, in the"

lineb = "desired application areas."

total string = linel + " " + line2 + " " + line3 + " " +
lined + " " + 1lineb5

print (total string)

phrases=re.split('[.,]',total string)

for phrase in phrases:
print (phrase)

if (_name == " main "):
main ()

Here is the output.

The important thing about a language, is not so much what
features the language possess, but the features it does pos-
sess, are sufficient, to support the desired programming
styles, 1in the desired application areas.
The important thing about a language

is not so much what features the language possess

but the features it does possess

are sufficient

to support the desired programming styles

in the desired application areas

The key difference is
phrases=re.split('[.,]',total string)

where we now have a regular expression].,] as the basis of the characters to split on.

7.6 String example 4 - reading from an external file
In this example we read data from an external file. We will use a file from

http://www.metoffice.gov.uk/public/weather/climate-his-
toric/#?tab=climateHistoric

In the example below I will use

http://www.metoffice.gov.uk/pub/data/weather/uk/cli-
mate/stationdata/cwmystwythdata.txt

In the problems you can replace this file wiith one of your own choice.
Here is the program.

data file="cwmystwythdata.txt"

f=open(data file)

Chapter 7 Ian D Chivers

Text in Python: Strings 113

print (" Here are the header lines\n\n")
for i in range(0,7):
line=f.readline ()
line=line.rstrip('\n")
print (line)
print ("\n\n ** 1959 and 1960 have missing rainfall values
\n\n")
for i in range(0,12):
line=f.readline ()
line=line.rstrip('\n")
print (line)
for i in range(0,12):
line=f.readline ()
line=line.rstrip('\n")
print (line)
print ("\n\n ** 1961, 1962 and 1963 are incomplete ** \n\n")
for i in range(0,9):
line=f.readline ()
line=line.rstrip('\n")
print (line)
for i in range(0,8):
line=f.readline ()
line=line.rstrip('\n")
print (line)
for i in range(0,10):
line=f.readline ()
line=line.rstrip('\n")
print (line)
print ("\n\n ** 1964 1is the first complete year of rainfall
values ** \n\n")
for i in range(0,12):
line=f.readline ()
line=line.rstrip('\n")
print (line)

Here is the output from running the program.

Here are the header lines

Cwmystwyth
Location: 2773E 2749N, 301 metres amsl
Estimated data is marked with a * after the wvalue.
Missing data (more than 2 days missing in month) is marked
by -—---.
Sunshine data taken from an automatic Kipp & Zonen sensor
marked with a #, otherwise sunshine data taken from a Camp-
bell Stokes recorder.

VYyYyy — mm tmax tmin af rain sun

degC degC days mm hours

Ian D Chivers Chapter 7

114 Text in Python: Strings

** 1959 and 1960 have missing rainfall wvalues

1959 1 4.5 -1.9 20 -—= 57.2
1959 2 7.3 0.9 15 -—= 87.2
1959 3 8.4 3.1 3 -—= 81.6
1959 4 10.8 3.7 1 - 107.4
1959 5 15.8 5.8 1 -—= 213.5
1959 6 16.9 8.2 0 -—= 209.4
1959 7 18.5 9.5 0 -—= 167.8
1959 8 19.0 10.5 0 -—= 164.8
1959 9 18.3 5.9 0 -—= 196.5
1959 10 14.8 7.9 1 - 101.1
1959 11 8.8 3.9 3 -—= 38.9
1959 12 7.2 2.5 3 -—= 19.2
1960 1 6.3 0.6 15 -—= 30.7
1960 2 5.3 -0.3 17 -—= 50.2
1960 3 8.2 2.4 4 -—= 73.9
1960 4 11.2 2.6 7 -—= 146.8
1960 5 15.4 6.5 2 -—= 153.9
1960 6 18.5 8.2 0 -—= 225.6
1960 7 16.0 9.3 0 -—= 111.3
1960 8 16.5 9.4 0 -—= 119.2
1960 9 15.0 7.9 0 -—= 120.3
1960 10 12.0 5.3 5 -——= -——=
1960 11 8.8 2.9 5 -—= 37.3
1960 12 5.9 0.4 13 -—= 33.9

** 1961, 1962 and 1963 are incomplete **

1961 1 5.4 0.2 11 144.8 31.0
1961 2 8.7 2.9 2 112.5 45.2
1961 3 10.2 2.1 10 77.2 102.6
1961 4 11.9 5.0 1 130.7 83.9
1961 5 -—= -—= -—= 66.3 173.7
1961 6 -—= 7.4 -—= 66.1 190.6
1961 7 16.7 8.2 0 141.1 149.2
1961 8 16.8 10.1 0 149.5 106.6
1961 9 17.4 9.3 0 134.8 79.7
1962 5 4.2 3 117.8 102.2
1962 6 6.8 1 72.8 163.9
1962 7 16.8 9.1 0 56.7 -—=
1962 8 15.6 9.3 0 236.2 -—=
1962 9 14.6 7.8 1 218.0 -—=
1962 10 -—= -—= -—= 69.7 -—=
1962 11 7.6 1.8 9 85.2 -—=
1962 12 5.3 -1.0 18 204 .4 -—=

Chapter 7 Ian D Chivers

1963
1963
1963
1963
1963
1963
1963 S
1963 10
1963 11
1963 12

O J oy U b W

** 1964 1is

1964
1964
1964
1964
1964
1964
1964
1964
1964
1964 10
1964 11
1964 12

O J o U b Wb

O

Text in Python: Strings

——- 106.

1 159.

1 12s.
- ——- 121.
- ——- 62.
- ——- 154.
——- ——- ——- 165.
- ——- 139.
9.8 4.3 1 234,
4.4 ~0.9 18 19.

I N OO0 W oo g
~J
o
o

the first complete year of rainfall wvalues

5.6 0.6 15 83.1 30.6
5.7 0.7 14 38.5 47.5
6.5 0.7 15 67.3 88.7
10.3 3.6 5 76.4 102.4
15.2 7.5 1 90.4 142.8
15.2 8.2 0 83.5 104.5
16.6 10.1 0 177.0 95.4
17.2 9.4 0 180.5 155.7
16.4 8.2 0 66.0 140.3
11.2 3.6 0 171.9 92.1
9.5 4.3 6 174.5 43.6
5.9 -0.2 14 334.8 44.0

115

* %

7.7 String example 5 - reading data from a file and calculating sum
and average rainfall values

In the previous example the first year with 12 months of rainfall data was 1964. We will
read this data in and extract the rainfall values for the year and calculate the sum and aver-
age of the rainfall in inches.

Here is the program.

import numpy as np
data file="cwmystwythdata.txt"

nmonths=12
cmsum=0.0

imperial sum

= 0.0

imperial average = 0.0
X = np.empty([nmonths] , dtype=np.float64)
f=open(data file)
print (" ** Skipping header lines ** \n")
for i in range(0,7):
line=f.readline ()
print (" ** Skipping 1959 ** \n")
for i in range(0,12):
line=f.readline()
print (" ** Skipping 1960 ** \n")

Ian D Chivers

Chapter 7

116 Text in Python: Strings

for i in range(0,12):
line=f.readline ()

print (" ** Skipping 1961 ** \n")

for i in range(0,9):
line=f.readline ()

print (" ** Skipping 1962 ** \n")

for i in range(0,8):
line=f.readline ()

print (" ** Skipping 1963 ** \n")

for i in range(0,10):
line=f.readline ()

print (" ** Reading 1964 ** \n")

for i in range(0,12):
line=f.readline ()
x[1]=(float) (1line[36:42])
print (" %6.1f " % x[i])

print (" ** mms ** ")

print (" %6.1f " % x.sum())
print (" %6.1f " % (x.sum()/nmonths))

imperial sum=x.sum()/25.4
imperial average=imperial sum/nmonths
print (" ** inches ** ")

print (" %6.1f " % imperial sum)
print (" %6.1f " % imperial average)

Here is the output.

$ python3 c0804.py
** Skipping header lines **

** Skipping 1959 *x*
** Skipping 1960 *x*
** Skipping 1961 **
** Skipping 1962 *x*
** Skipping 1963 *x*
** Reading 1964 **

83.
38.
67.
76.
90.
83.
177.
180.
66.

o OO x> WO

Chapter 7 Ian D Chivers

Text in Python: Strings

171.9
174.5
334.8
* % mms * %
1543.9
128.7
** inches **
60.8
5.1

We have also formatted the numeric output.

117

7.8 String example 6 - simple variant of the previous example using

the .format option

This is a simple variant of the last example using .format.

import numpy as np

data file="cwmystwythdata.txt"

nmonths=12

cmsum=0.0

imperial sum = 0.0
imperial average = 0.0

x = np.empty([nmonths] ,
f=open(data_ file)

print (" ** Skipping header lines **

for i in range(0,7):
line=f.readline ()
print (" ** Skipping 1959
for i in range(0,12):
line=f.readline ()
print (" ** Skipping 1960
for i in range(0,12):
line=f.readline ()
print (" ** Skipping 1961
for i in range(0,9):
line=f.readline ()
print (" ** Skipping 1962
for i in range(0,8):
line=f.readline ()
print (" ** Skipping 1963
for i in range(0,10):
line=f.readline ()
print (" ** Reading 1964
for i in range(0,12):
line=f.readline ()

* %

x[i1]=(float) (1ine[36:42])
print (" %6.1f ".format(x[i]))

print (" ** mms ** ")

dtype=np.float64)

\n")

\n")

\n")

\n")

\n")

\n")

print (" %6.1f ".format(x.sum()))

print (" %6.1f ".format ((x.sum()/nmonths)))

imperial sum=x.sum()/25.4

Ian D Chivers

Chapter 7

118

Text in Python: Strings

imperial average=imperial sum/nmonths

print ("
print ("
print ("

** inches ** ")
%6.1f ".format (imperial sum))
$6.1f ".format (imperial average))

The output is as in the previous example.

7.9 Character data in Python

The next set of examples look at character data in Python. Some of the background mate-
rial in this section is taken from the following Wikipedia entry.

https://en.wikipedia.org/wiki/Character encoding

The term character encoding means the use of a coding mechanism to represent a set of

characters.

Some of the early character encodings are

Morse code - a character encoding scheme used in telecommunication that en-
codes text characters as standardized sequences of two different signal durations
called dots and dashes. Morse code is named for Samuel F. B. Morse, an inven-
tor of the telegraph.

Baudot code, a five-bit encoding, was created by Emile Baudot in 1870, patented
in 1874, modified by Donald Murray in 1901, and standardized by CCITT as In-
ternational Telegraph Alphabet No. 2 (ITA2) in 1930

ASCII - abbreviated from American Standard Code for Information Interchange,
is a character encoding standard for electronic communication. ASCII codes rep-
resent text in computers, telecommunications equipment, and other devices.
Most modern character-encoding schemes are based on ASCII, although they
support many additional characters.

Most programming languages use the ASCII character set as the basis for the characters
used in writing programs.

7.10 String example 7 - the ASCII character set

The following program

def main () :

for i in range(32,64):

cl chr (i)

c2 = chr(i+32)

c3 = chr(i+64)

print (" {0:3d} {1} {2:3d} {3} {4:3d} {5}

".format((i) , ¢l , (i+32) , c2 , (i+064) , c3))

if |

name = " main "):

main ()

prints out the ASCII character set. Here is the output from running the program.

Chapter 7

32 64 @ 96
33 ! 65 A 97 a
34 " 66 B 98 b

Ian D Chivers

Text in Python: Strings 119

35 # 67 C 99 ¢
36 S 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 £
39 71 G 103 g
40 72 H 104 h
41) 73 I 105 i
42 * 74 g 106
43 + 75 K 107 k
a4 76 L 108 1
45 - 77 M 109 m
46 . 78 N 110 n
47 / 79 0 111 o
48 0 80 P 112 p
49 1 81 0O 113 g
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 Vv 118 v
55 7 87 W 119 w
56 8 88 X 120 x
57 9 89 Y 121 y
58 : 90 7 122 7
59 ; 91 I 123 {
60 < 92\ 124 |
61 = 93] 125)
62 > 94 ~ 126 ~
63 2 95 127

There are a number of limitations with the ASCII character set, including
e no support for languages other than English
e 1o access to symbols widely used in science and engineering
e no support for ligatures
e no support for mathematical equations

Unicode and the Unicode standard is an attempt to address some of these issues.

7.11 Unicode

Here is the home address of the Unicode Consortium.
https://unicode.org/

In the ASCII character set we see the use of numbers to provide access to characters. Com-
puters store letters and other characters by assigning a number for each one.

Before Unicode was invented, there were hundreds of different systems, called character
encodings, for assigning these numbers. These early character encodings were limited and
could not contain enough characters to cover all the world's languages. Even for a single
language like English no singleencoding was adequate for all the letters, punctuation, and
technical symbols in common use.

Ian D Chivers Chapter 7

120 Text in Python: Strings

Early character encodings also conflicted with one another. That is, two encodings could
use the same number for two different characters, or use different numbers for the same
character. Any given computer (especially servers) would need to support many different
encodings. However, when data is passed through different computers or between different
encodings, that data runs the risk of corruption.

Unicode solves many of these problems. Unicode is a computing industry standard for the
consistent encoding, representation, and handling of text expressed in most of the world's
writing systems. The standard is maintained by the Unicode Consortium, and as of June
2018 the most recent version, Unicode 11.0, contains a repertoire of 137,439 characters
covering 146 modern and historic scripts, as well as multiple symbol sets and emoji. The
character repertoire of the Unicode Standard is synchronized with ISO/IEC 10646, and both
are code-for-code identical.

The Unicode Standard consists of a set of code charts for visual reference, an encoding
method and set of standard character encodings, a set of reference data files, and a number
of related items, such as character properties, rules for normalization, decomposition, colla-
tion, rendering, and bidirectional display order (for the correct display of text containing
both right-to-left scripts, such as Arabic and Hebrew, and left-to-right scripts).

Unicode's success at unifying character sets has led to its widespread and predominant use
in the internationalization and localization of computer software. The standard has been im-
plemented in many recent technologies, including modern operating systems, XML, Java
(and other programming languages), and the .NET Framework.

Unicode can be implemented by different character encodings. The Unicode standard de-
fines UTF-8, UTF-16, and UTF-32, and several other encodings are in use. The most com-
monly used encodings are UTF-8, UTF-16, and UCS-2, a precursor of UTF-16.

UTF-8, the dominant encoding on the World Wide Web (used in over 92% of websites),
uses one byte for the first 128 code points, and up to 4 bytes for other characters. The first
128 Unicode code points are the ASCII characters, which means that any ASCII text is also
a UTF-8 text.

UCS-2 uses two bytes (16 bits) for each character but can only encode the first 65,536 code
points, the so-called Basic Multilingual Plane (BMP). With 1,114,112 code points on 17
planes being possible, and with over 137,000 code points defined so far, UCS-2 is only able
to represent less than half of all encoded Unicode characters. Therefore, UCS-2 is obsolete,
though still widely used in software. UTF-16 extends UCS-2, by using the same 16-bit en-
coding as UCS-2 for the Basic Multilingual Plane, and a 4-byte encoding for the other
planes. As long as it contains no code points in the reserved range U+D800-U+DFFF, a
UCS-2 text is a valid UTF-16 text.

UTF-32 (also referred to as UCS-4) uses four bytes for each character. Like UCS-2, the
number of bytes per character is fixed, facilitating character indexing; but unlike UCS-2,
UTF-32 is able to encode all Unicode code points. However, because each character uses
four bytes, UTF-32 takes significantly more space than other encodings, and is not widely
used.

7.12 String example 8 - Unicode characters
The following program

import array

def main () :

Chapter 7 Ian D Chivers

Text in Python: Strings 121

The first Unicode standard supported 16 bit characters
65535
n = (2**16)-1
print (" Size = ",n)
Create a character array of size n and
fill the character array with X
character array = ['X'] * n
start = 0

end = int(n/64)

1023 lines

print (" start = ",start)
print (" end = ",end)
text buffer = array.array('u' , character array)
The
#
chr()
#
function returns the character that represents the speci-
fied unicode.

for i in range(31,n):
text buffer[i] = chr (i)

for 1 in range(0,32):
print (" Line = {0:4d} ".format(l),end=" ")
for ¢ in range(0,64):
print (text buffer[start] , end="")

start = start + 1
print ()
if (__name == " main_ "):

main ()

looks at creating an array of Unicode characters and printing some of them out. Try running
it from an IDE and from the command line. What do you notice about the output?

7.13 Example 9 - another unicode example
Here is the source code.

import array

def main () :

Ian D Chivers Chapter 7

122 Text in Python: Strings

A more recent Unicode standard supports
1,114,112 code points
n = 1114112
print (" Size = ",n)
Create a character array of size n and
fill the character array with X
character array = ['X'] * n
start = 0

end = int(n/64)

1023 lines

print (" start = ",start)
print (" end = ",end)
text buffer = array.array('u' , character array)
The
#
chr()
#
function returns the character that represents the speci-
fied unicode.

for i in range(31,n):
text buffer[i] = chr (i)

for 1 in range(0,32):
print (" Line = {0:4d} ".format(l),end=" ")
for ¢ in range(0,64):
print (text buffer[start] , end="")

start = start + 1
print ()
if (__name == " main_ "):

main ()

Here is the output.

Size = 1114112
start = 0
end = 17408

Traceback (most recent call last):
File "c0709.py", line 43, in <module>

main ()
File "c0709.py", line 33, in main
text buffer[i] = chr (i)

Chapter 7 Ian D Chivers

Text in Python: Strings 123

TypeError: array item must be unicode character

We will look at resolving the error with this program in the practicals.

7.14 Problems

1. Compile and run the examples in this chapter.,

2. Replace the Cwmystwyth file with one of your choice from the Met Office site. Make the
necessary changes to print the first 6 years data.

3. Using one of the earlier programs write a program that produces the following output.

!
"4
$%&
()
+,-./
012345
6789:;<
=>?@ABCD
EFGHIJKLM
NOPQRSTUVW
XYZ[\]1~ “ab
cdefghijklmn
opgrstuvwxyz{
|}~
One way to print multiple characters on a line is to use the print method and end="".
The above are the printing characters from the ASCII character set.
4. Modify the above program to produce the following output.
!
"#S
5&" ()
*+,-./0
123456789
:;<=>7?W@ABCD
EFGHIJKLMNOPQ
RSTUVWXYZ[\]A_
abcdefghijklmnopg
rstuvwxyz{ |}~

Again we assume the ASCII character set

5. Using the split examples as a starting point write a program that generates the following
output.

Output:
Words = 34
1: a [1]
2: is so it to in [5]
3: The not the but the are the the [8]
4: much what does [3]
5: issue about areas [3]
6: styles [1]

Ian D Chivers Chapter 7

124 Text in Python: Strings

7: possess support desired desired [4]
8: language features language features [4]
9: important possesses [2]
10: sufficient [1]
11: programming application [2]
7. Visit the UNICODE site.
http://www.unicode.org/standard/WhatIsUnicode.htm
Chose a code chart.
http://www.unicode.org/charts/
This is one of the code tables.
http://www.unicode.org/charts/PDF/U13A0.pdf
Choose one or more characters. Can you get your characters to display in a Python
program?

Chapter 7 Ian D Chivers

Control Structures - compound statements 125

Summarising: as a slow-witted human being I have a very small head and I had better learn
to live with it and to respect my limitations and give them full credit, rather than try to ig-
nore them, for the latter vain effort will be punished by failure.

Edsger W. Dijkstra, Structured Programming.

8 Control Structures - compound
statements

There are a reasonable range of control structures in Python. The following information is
taken from section 8 of the reference manual.

8.1 Compound statements

Compound statements contain (groups of) other statements; they affect or control the execu-
tion of those other statements in some way. In general, compound statements span multiple
lines, although in simple incarnations a whole compound statement may be contained in one
line.

The if, while and for statements implement traditional control flow constructs. try specifies
exception handlers and/or cleanup code for a group of statements, while the with statement
allows the execution of initialization and finalization code around a block of code. Function
and class definitions are also syntactically compound statements.

A compound statement consists of one or more ‘clauses.” A clause consists of a header and
a ‘suite.” The clause headers of a particular compound statement are all at the same indenta-
tion level. Each clause header begins with a uniquely identifying keyword and ends with a
colon. A suite is a group of statements controlled by a clause. A suite can be one or more
semicolon-separated simple statements on the same line as the header, following the
header’s colon, or it can be one or more indented statements on subsequent lines. Only the
latter form of a suite can contain nested compound statements; the following is illegal,
mostly because it wouldn’t be clear to which if clause a following else clause would be-
long:

if testl: if test2: print (x)

Also note that the semicolon binds tighter than the colon in this context, so that in the fol-
lowing example, either all or none of the print() calls are executed:

if x < y < z: print(x); print(y); print(z)

The compound statements are

e if stmt
e while stmt

e for stmt

e try stmt
e with stmt
e funcdef
e classdef

e async with stmt

e async_for stmt

Ian D Chivers Chapter 8

126 Control Structures - compound statements

e async_funcdef

e suite = stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
e statement = stmt list NEWLINE | compound stmt
e stmt list = simple stmt (";" simple stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also
note that optional continuation clauses always begin with a keyword that cannot start a
statement, thus there are no ambiguities (the ‘dangling else‘ problem is solved in Python by
requiring nested if statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a sepa-
rate line for clarity.

8.2 The if statement

The if statement is used for conditional execution:

if stmt ::= "if" expression ":" suite
("elif" expression ":" suite)*
["else"™ ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is
found to be true (see section Boolean operations for the definition of true and false); then
that suite is executed (and no other part of the if statement is executed or evaluated). If all
expressions are false, the suite of the else clause, if present, is executed.

8.3 The while statement
The while statement is used for repeated execution as long as an expression is true:

while stmt ::= "while" expression ":" suite
["else"™ ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expres-
sion is false (which may be the first time it is tested) the suite of the else clause, if present,
is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else
clause’s suite. A continue statement executed in the first suite skips the rest of the suite and
goes back to testing the expression.

8.4 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple
or list) or other iterable object:

for stmt ::= "for" target list "in" expression list ":"
suite
["else™ ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is cre-
ated for the result of the expression_list. The suite is then executed once for each item pro-
vided by the iterator, in the order returned by the iterator. Each item in turn is assigned to
the target list using the standard rules for assignments (see Assignment statements), and
then the suite is executed. When the items are exhausted (which is immediately when the
sequence is empty or an iterator raises a Stoplteration exception), the suite in the else
clause, if present, is executed, and the loop terminates.

Chapter 8 Ian D Chivers

Control Structures - compound statements 127

A break statement executed in the first suite terminates the loop without executing the else
clause’s suite. A continue statement executed in the first suite skips the rest of the suite and
continues with the next item, or with the else clause if there is no next item.

The for-loop makes assignments to the variables(s) in the target list. This overwrites all pre-
vious assignments to those variables including those made in the suite of the for-loop:

for i in range(10):

print (i)

i =5
this will not affect the for-loop
because i will be overwritten with the next
index in the range
Names in the target list are not deleted when the loop is finished, but if the sequence is
empty, they will not have been assigned to at all by the loop. Hint: the built-in function
range() returns an iterator of integers suitable to emulate the effect of Pascal’s fori:=atob
do; e.g., list(range(3)) returns the list [0, 1, 2].
Note There is a subtlety when the sequence is being modified by the loop (this can only oc-
cur for mutable sequences, i.e. lists). An internal counter is used to keep track of which
item is used next, and this is incremented on each iteration. When this counter has reached
the length of the sequence the loop terminates. This means that if the suite deletes the cur-
rent (or a previous) item from the sequence, the next item will be skipped (since it gets the
index of the current item which has already been treated). Likewise, if the suite inserts an
item in the sequence before the current item, the current item will be treated again the next
time through the loop. This can lead to nasty bugs that can be avoided by making a tempo-
rary copy using a slice of the whole sequence, e.g.,
for x in afl:]:

if x < 0: a.remove (x)

8.5 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of state-
ments:

try stmt ::= tryl stmt | try2 stmt
tryl stmt ::= "try" ":" suite
("except" [expression ["as" identifier]]
":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2 stmt ::= "try" ":" suite
"finally" ":" suite

The except clause(s) specify one or more exception handlers. When no exception occurs in
the try clause, no exception handler is executed. When an exception occurs in the try suite,
a search for an exception handler is started. This search inspects the except clauses in turn
until one is found that matches the exception. An expression-less except clause, if present,
must be last; it matches any exception. For an except clause with an expression, that ex-
pression is evaluated, and the clause matches the exception if the resulting object is “com-
patible” with the exception. An object is compatible with an exception if it is the class or a
base class of the exception object or a tuple containing an item compatible with the
exception.

Ian D Chivers Chapter 8

128 Control Structures - compound statements

If no except clause matches the exception, the search for an exception handler continues in
the surrounding code and on the invocation stack. [1]

If the evaluation of an expression in the header of an except clause raises an exception, the
original search for a handler is cancelled and a search starts for the new exception in the
surrounding code and on the call stack (it is treated as if the entire try statement raised the
exception).

When a matching except clause is found, the exception is assigned to the target specified
after the as keyword in that except clause, if present, and the except clause’s suite is exe-
cuted. All except clauses must have an executable block. When the end of this block is
reached, execution continues normally after the entire try statement. (This means that if two
nested handlers exist for the same exception, and the exception occurs in the try clause of
the inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except
clause. This is as if
except E as N:
foo
was translated to
except E as N:

try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after
the except clause. Exceptions are cleared because with the traceback attached to them, they
form a reference cycle with the stack frame, keeping all locals in that frame alive until the
next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sys
module and can be accessed via sys.exc_info(). sys.exc_info() returns a 3-tuple consisting
of the exception class, the exception instance and a traceback object (see section The stan-
dard type hierarchy) identifying the point in the program where the exception occurred.
sys.exc_info() values are restored to their previous values (before the call) when returning
from a function that handled an exception.

The optional else clause is executed if and when control flows off the end of the try clause.
[2] Exceptions in the else clause are not handled by the preceding except clauses.

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including
any except and else clauses. If an exception occurs in any of the clauses and is not handled,
the exception is temporarily saved. The finally clause is executed. If there is a saved excep-
tion it is re-raised at the end of the finally clause. If the finally clause raises another excep-
tion, the saved exception is set as the context of the new exception. If the finally clause ex-
ecutes a return or break statement, the saved exception is discarded:

>>>
>>> def f£():
try:
1/0
finally:
return 42
>>> f ()

Chapter 8 Ian D Chivers

Control Structures - compound statements 129

42

The exception information is not available to the program during execution of the finally
clause.

When a return, break or continue statement is executed in the try suite of a try...finally
statement, the finally clause is also executed ‘on the way out.” A continue statement is ille-
gal in the finally clause. (The reason is a problem with the current implementation — this
restriction may be lifted in the future).

The return value of a function is determined by the last return statement executed. Since the
finally clause always executes, a return statement executed in the finally clause will always
be the last one executed:

>>>
>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'"finally'

Additional information on exceptions can be found in section Exceptions, and information
on using the raise statement to generate exceptions may be found in section The raise
statement.

8.6 The with statement

The with statement is used to wrap the execution of a block with methods defined by a con-
text manager (see section With Statement Context Managers). This allows common try...ex-
cept...finally usage patterns to be encapsulated for convenient reuse.

with stmt ::= "with" with item ("," with item)* ":" suite
with item ::= expression ["as" target]

The execution of the with statement with one “item” proceeds as follows:

e 1. The context expression (the expression given in the with item) is evaluated to
obtain a context manager.

e 2. The context manager’s exit () is loaded for later use.
e 3. The context manager’s __enter () method is invoked.

e 4. If a target was included in the with statement, the return value from en-
ter () is assigned to it.

Note The with statement guarantees that if the enter () method returns
without an error, then exit () will always be called. Thus, if an error oc-
curs during the assignment to the target list, it will be treated the same as an
error occurring within the suite would be. See step 6 below.

e 5. The suite is executed.

e 6. The context manager’s _ exit () method is invoked. If an exception caused
the suite to be exited, its type, value, and traceback are passed as arguments to
__exit_ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the
__exit_ () method was false, the exception is reraised. If the return value

Ian D Chivers Chapter 8

130 Control Structures - compound statements

was true, the exception is suppressed, and execution continues with the
statement following the with statement.

If the suite was exited for any reason other than an exception, the return
value from _ exit () is ignored, and execution proceeds at the normal loca-
tion for the kind of exit that was taken.

With more than one item, the context managers are processed as if multiple with state-
ments were nested:

with A() as a, B() as b:
suite

is equivalent to

with A() as a:
with B() as b:
suite

We will have a look at some examples next.

8.7 The pass statement

The pass statement does nothing. It can be used when a statement is required syntactically
but the program requires no action. For example:

while True:
pass

This is commonly used for creating minimal classes:

class MyEmptyClass:
pass

Another place pass can be used is as a place-holder for a function or conditional body
when you are working on new code, allowing you to keep thinking at a more abstract
level. The pass is silently ignored:

def initlog(*args):
pass # Remember to implement this!

8.8 Example 1 - the if statement
Here is the first example. We have an if then else in this program.

import numpy as np
n=>5
height=np.array([1.85,1.80,1.85,1.70,1.751)
weight=np.array([85.0,76.0,85.0,90.0,69.0])
bmi =np.empty([n],dtype=np.float64)
for i in range(0,n):
bmi[i]=weight[i]/ (height[i]**2)
print("{0:5.2f}".format (bmi[i]),end=" ")
if ((bmi[i]>20.00) and (bmi[i1]1<25.00)):
print (" Normal")

elif ((bmi[1]>25.00) and (bmi[1]<30.00)):
print (" Overweight")

elif ((bmi[1]>30.00) and (bmi[1]<40.00)):
print (" Obese")

Chapter 8 Ian D Chivers

Control Structures - compound statements 131

Here is the output.

$ python3 c0801.py
24 .84 Normal
23.46 Normal
24 .84 Normal
31.14 Obese
22 .53 Normal

The data is taken from a first year class of Mechanical Engineering students.
8.9 Example 2 - the while statement

Here is a while example. This program evaluates exp(1.0) using a summation.

import math
tol=1.0e-16

etox=1.0
term=1.0
nterm=0
x=1.0
while (term > tol):
nterm+=1
term = (x/nterm) * term
etox+=term
print ("Calculated = {0:20.15f} ".format (etox))
print ("math.exp = {0:20.15f} ".format (math.exp(x)))
print ("N iterations = {0:6d} ".format (nterm))

Here is the program output.

$ python3 c0802.py

Calculated = 2.7182818284590406
math.exp = 2.718281828459046
N iterations = 19

The series converges relatively quickly.

8.10 Example 3 - the for loop with arrays

You have already seen examples of for loops and arrays. Here is a variation of an earlier
one. Here is the program.

import numpy as np
n=12
month=0
rainfall = np.array([3.1 , 2.0 , 2.4 , 2.1 , 2.2 , 2.2,
1.8 , 2.2 , 2.7, 2.9, 3.1 , 3.1 1)
for month in range (0,n):
print (" {0:2d} {1:4.1f} ".format (month,rainfall[month]))

Here is the output.
$ python3 c0803.py

0 3.1
1 2.0
2 2.4

Ian D Chivers Chapter 8

132

3 2.1
4 2.2
5 2.2
6 1.8
7T 2.2
8 2.7
9 2.9
10 3.1
11 3.1

Control Structures - compound statements

8.11 Example 4 - the for loop with lists and enumerate
This example looks at the type of for loop you can use with lists. Here is the program.

months=["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",

"December"]

print (type (months))
for m in months:

print (m)

for index,value in enumerate (months) :
print (index, value)

Here is the output.

$ python3 c0804.py

<class 'list'>

January
February
March

April

May

June

July

August
September
October
November
December
January
February
March
April

May

June

July
August
September
9 October
10 November
11 December

O J oy U1 LW DN O

Chapter 8

Ian D Chivers

Control Structures - compound statements 133

Note that months is not an array, but a list.

8.12 Example 5 - the for in statement

Here is a variation on the previous example in how to initalise a collection of strings, in
this case day names.

day names = [s for s in ['Sunday', 'Monday', 'Tuesday',
'Wednesday', 'Thursday', 'Friday', 'Saturday']]

print (type (day names))

print (day names)

Here is the output.

<class 'list'>
['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',
'"Friday', 'Saturday']

Note that day names is not an array, but a list.

8.13 Example 6 - try and except
Here is the example.
try:
testfile = open("silly")
testfile.write (" Silly billy")
except IOError:
print ("File error")
else:
print ("It worked")
When the file does not exist we get.

$ python3 c0805.py
File error

8.14 Additional material

We will have a look at additional examples throughout other sections of the notes. We will
look at

e with

e funcdef

e class def

e async with

e async for

e async funcdef

where appropriate.

8.15 Problems
1. Write a program to print out the 12 times table. Output should be roughly of the form
1 * 12 = 12
2 * 12 = 24
2. Write a program that produces a conversion table from litres to pints and vice versa. One
litre is approximately 1 % pints. The output should comprise three columns. The middle

Ian D Chivers Chapter 8

134 Control Structures - compound statements

column should be an integer and the columns to the left and right should be the correspond-
ing pints and litre values. This enables the middle column to be scanned quickly and the
corresponding equivalent in litres or pints read easily.

3. Rewrite the program for the period of a pendulum. The new program should print out the
length of the pendulum and period for lengths of the pendulum from 0 to 100 cm in steps of
0.5 cm.

The physical world has many examples where processes require some threshold to be over-
come before they begin operation: critical mass in nuclear reactions, a given slope to be ex-
ceeded before friction is overcome, and so on. Unfortunately, most of these sorts of calcula-
tions become rather complex and not really appropriate here. The following problem tries to
restrict the range of calculation, whilst illustrating the possibilities of decision making.

4. If a cubic equation is expressed as

Z+a,z’+a,z+a,=0
and we let

q:a1/3—(a2*a2)/9

and
r=(a, a, -3a,)/6—(a2 a, a,)/27
we can determine the nature of the roots as follows:
q3 +12> 0; one real root and a pair of complex;
q3 +1% = 0; all roots real, and at least two equal;
3 2 . .
q~ + 17 <0; all roots real;

Incorporate this into a suitable program, to determine the nature of the roots of a cubic from
suitable input.

5. The form of breaking waves on beaches is a continuum, but for convenience we com-
monly recognise three major types: surging, plunging and spilling. These may be classified
empirically by reference to the wave period, T (seconds), the breaker wave height, Hp
(metres), and the beach slope, m. These three variables are combined into a single parame-
ter, B, where
B = Hb/(ngz)

g is the gravitational constant (981 cm secfz). If B is less than .003, the breakers are surg-
ing; if B is greater than 0.068, they are spilling, and between these values, plunging break-
ers are observed.

(1) On the east coast of New Zealand, the normal pattern of waves is swell waves, with
wave heights of 1 to 2 metres, and wave periods of 10 to 15 seconds. During storms, the
wave period is generally shorter, say 6 to 8 seconds, and the wave heights higher, 3 to 5
metres. The beach slope may be taken as about 0.1. What changes occur in breaker charac-
teristics as a storm builds up?

(i1) Similarly, many beaches have a concave profile. The lower beach generally has a very
low slope, say less than 1 degree (m=0.018), but towards the high tide mark, the slope in-

Chapter 8 Ian D Chivers

Control Structures - compound statements 135

creases dramatically, to say 10 degrees or more (m=0.18). What changes in wave type will
be observed as the tide comes in?

6. Personal taxation is usually structured in the following way:—

no taxation on the first mo units of income;
taxation at t1% on the next mp units;
taxation at t2% on the next mp units;

taxation at t3% on anything above.

For some reason, this is termed progressive taxation. Write a generalised program to deter-
mine net income after tax deductions. Write out the gross income, the deductions and the
net income. You will have to make some realistic estimates of the tax thresholds mj and the
taxation levels ti. You could use this sort of model to find out how sensitive revenue from
taxation was in relation to cosmetic changes in thresholds and tax rates.

8. The specific heat capacity of water is 2009 J kg_1 K_l; the specific latent heat of fusion
(ice/water) is 335 kJ kg_l, and the specific latent heat of vaporization (water/steam) is 2500
kJ kg_l. Assume that the specific heat capacity of ice and steam are identical to that of wa-
ter. Write a program which will read in two temperatures, and will calculate the energy re-
quired to raise (or lower) ice, water or steam at the first temperature, to ice, water or steam
at the second. Take the freezing point of water as 273 K, and its boiling point as 373 K. For
those happier with Celsius, 0° C is 273 K, while 100° ¢ is 373 K. One calorie is 4.1868 J,
and for the truly atavistic, 1 BTU is 1055 J (approximately).

9. Get height and weight measurements for yourself and the other people in the class. Cal-
culate BMI values.

8.16 Bibliography
Dahl O. J., Dijkstra E. W., Hoare C. A. R., Structured Programming, Academic Press, 1972.

e This is the original text, and a must. The quote at the start of the chapter by
Dijkstra summarises beautifully our limitations when programming and the disci-
pline we must have to successfully master programming.

Knuth D. E., Structured Programming with GOTO Statements, in Current Trends in Pro-
gramming Methodology, Volume 1, Prentice Hall.

e The chapter by Knuth provides a very succinct coverage of the arguments for the
adoption of structured programming, and dispells many of the myths concerning
the use of the GOTO statement. Highly recommended.

Ian D Chivers Chapter 8

136 Functions

I can call spirits from the vasty deep.
Why so can I, or so can any man; but will they come
when you do call for them?

William Shakespeare, King Henry IV, part 1

9 Functions

This is the major step forward in the ability to construct larger programs. We have to have a
way of breaking problems down into smaller sub-problems. The terminology varies with
programming languages:

e in Fortran we have functions and subroutines;

e in the Algol family of languages we have functions and procedures;

e in the C family we have functions;

e in object oriented programming we have methods;

The basic idea is the same. We start by looking at a small number of user written functions.
We will then look at some of the intrinsics.

9.1 Example 1 - a bigger function

def bigger(a,b):
if (a>b):
return a
else:
return b

x=10

y=20

print (" Biggest of {:3d} and {:3d} is {:3d} ".format (x,y,big-
ger (x,v)))

x1=1.0

x2=2.0

print (" Biggest of {:4.2f} and {:4.2f} is {:4.2f} ".for-

mat (x1,x2,bigger (x1,x2)))

The function is given below

def bigger(a,b):
if (a>b):
return a
else:
return b

and we use the keyword def to indicate the start of the function definition. The function is
called bigger and takes two arguments, a and b. We test to see if a is greater than b and if it
is we return the value of a, else we return the value of b.

We call the function twice in the program, once with integer arguments, and once with real
arguments. The function is what is called generic or polymorphic in that it can work with
arguments of a variety of types.

Chapter 9 Ian D Chivers

Functions 137

Here is the output.

$ python3 c0901.py
Biggest of 10 and 20 is 20
Biggest of 1.00 and 2.00 is 2.00

The function works with both integer and real arguments.

9.2 Example 2 - a swap function

A classic function to implement to test out parameter passing in any language is a swap
function.

Here is a traditional implementation style in Python.

def swap(a,b):
t=a
a=b
b=t

x=10

y=20

print (" Before {:3d} and {:3d} ".format (x,Vy))

swap (%, y)

print (" After {:3d} and {:3d} ".format(x,y))
x1=1.0

x2=2.0

print (" Before {:4.1f} and {:4.1f} ".format(xl,x2))
swap (x1,x2)

print (" After {:4.1f} and {:4.1f} ".format (x1l,x2))

Here is the output.

$ python3 c0902.py
Before 10 and 20
After 10 and 20
Before 1.0 and 2.0
After 1.0 and 2.0

The values for x and y and for x1 and x2 are the same as before the call, i.e. the swap of
the values has not taken place. Note again that the function can take arguments of both inte-
ger and real type.

9.3 Example 3 - another swap
Here is a working Python implementation.

def swap(a,b):
return b, a

x=10

y=20

print (" Before {:3d} and {:3d} ".format (x,Vy))
X, y=swap (x,y)

print (" After {:3d} and {:3d} ".format(x,y))
x1=1.0

x2=2.0

Ian D Chivers Chapter 9

138 Functions

print (" Before {:4.1f} and {:4.1f} ".format (xl,x2))
x1,x2=swap (x1,x2)
print (" After {:4.1f} and {:4.1f} ".format (x1l,x2))

Here is the output.

$ python3 c0903.py
Before 10 and 20
After 20 and 10
Before 1.0 and 2.0
After 2.0 and 1.0

The swap has now taken place.

9.4 Example 4 - yet another swap

Here is an even shorter implementation.

x=10

yv=20

print (" Before {:3d} and {:3d} ".format (x,Vy))

X, Y=Y, X

print (" After {:3d} and {:3d} ".format(x,y))
x1=1.0

x2=2.0

print (" Before {:4.1f} and {:4.1f} ".format (xl,x2))
x1,x2=x2,x1

print (" After {:4.1f} and {:4.1f} ".format (x1l,x2))

Note - no function!

9.5 Example 5 - recursive functions
Here is the program.

def factorial (1) :

if (i==0):
return 1
else:

return i*factorial (i-1)

i=5

print (" Factorial of {:5d} is {:10d} ".format (i, facto-
rial(i)))

Here is the output.

$ python3 c0905.py

Factorial of 5 is 120

The next example is a simple variation where we read the integer number in.

9.6 Example 6 - simple factorial variant, reading the value in
Here is the source code.

def factorial (1) :
if (1==0):
return 1

Chapter 9 Ian D Chivers

Functions 139

else:
return i*factorial (i-1)

i = int(input (" Type in the number you want to find the fac-
torial of - an integer "))

print (" Factorial of {:5d} is {:10d} ".format (i, facto-
rial(i)))

Here is the output for 50.

Type in the number you want to find the factorial of - an integer 50

Factorial of 50 1is

30414093201713378043612608166064768844377641568960512000000000
000

How does this compare with other programming languages you know?

9.7 Intrinsic maths functions
The following information is taken from the library documentation.

9.71 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined
by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name
from the cmath module if you require support for complex numbers. The distinction be-
tween functions which support complex numbers and those which don’t is made since most
users do not want to learn quite as much mathematics as required to understand complex
numbers. Receiving an exception instead of a complex result allows earlier detection of the
unexpected complex number used as a parameter, so that the programmer can determine
how and why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted other-
wise, all return values are floats.

9.7.1.1 Number-theoretic and representation functions

math.ceil(x) Return the ceiling of x, the smallest integer greater than or equal to x.
If x is not a float, delegates to x. _ceil (), which should return an
Integral value.

math.copysign(x, y) Return a float with the magnitude (absolute value) of x but the sign
of y. On platforms that support signed zeros, copysign(1.0, -0.0) re-

turns -1.0.

math.fabs(x) Return the absolute value of x.

math.factorial(x) Return x factorial. Raises ValueError if x is not integral or is nega-
tive.

math.floor(x) Return the floor of x, the largest integer less than or equal to x. If x is
not a float, delegates to x._floor (), which should return an Integral
value.

math.fmod(x, y) Return fmod(x, y), as defined by the platform C library. Note that the
Python expression x % y may not return the same result. The intent
of the C standard is that fmod(x, y) be exactly (mathematically; to in-

Ian D Chivers Chapter 9

140 Functions

finite precision) equal to x - n*y for some integer n such that the re-
sult has the same sign as x and magnitude less than abs(y). Python’s
X % y returns a result with the sign of y instead, and may not be ex-
actly computable for float arguments. For example, fmod(-1e-100,
1e100) is -1e-100, but the result of Python’s -l1e-100 % 1el00 is
1e100-1e-100, which cannot be represented exactly as a float, and
rounds to the surprising 1€100. For this reason, function fmod() is
generally preferred when working with floats, while Python’s x % y
is preferred when working with integers.

math.frexp(x) Return the mantissa and exponent of x as the pair (m,). m is a float
and e is an integer such that x == m * 2**e exactly. If x is zero, re-
turns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

math.fsum(iterable) Return an accurate floating point sum of values in the iterable.
Avoids loss of precision by tracking multiple intermediate partial
sums:

>>>>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)

0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)

1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case

where the rounding mode is half-even. On some non-Windows builds, the underlying C li-

brary uses extended precision addition and may occasionally double-round an intermediate

sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for

accurate floating point summation.

math.gcd(a, b) Return the greatest common divisor of the integers a and b. If either a
or b is nonzero, then the value of gcd(a, b) is the largest positive inte-
ger that divides both a and b. gcd(0, 0) returns 0.

math.isclose(a, b, *, rel_tol=1e-09, abs tol=0.0)
Return True if the values a and b are close to each other and False
otherwise.

Whether or not two values are considered close is determined according to given absolute
and relative tolerances.

rel tol is the relative tolerance — it is the maximum allowed difference between a and b, rel-
ative to the larger absolute value of a or b. For example, to set a tolerance of 5%, pass
rel tol=0.05. The default tolerance is 1e-09, which assures that the two values are the same
within about 9 decimal digits. rel tol must be greater than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must
be at least zero.

If no errors occur, the result will be: abs(a-b) <= max(rel tol * max(abs(a), abs(b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules.
Specifically, NaN is not considered close to any other value, including NaN. inf and -inf are
only considered close to themselves.

math.isfinite(x)

Chapter 9 Ian D Chivers

Functions 141

Return True if x is neither an infinity nor a NaN, and False otherwise.
(Note that 0.0 is considered finite.)

math.isinf(x) Return True if x is a positive or negative infinity, and False other-
wise.

math.isnan(x) Return True if x is a NaN (not a number), and False otherwise.

math.ldexp(x, 1) Return x * (2**i). This is essentially the inverse of function frexp().

math.modf(x) Return the fractional and integer parts of x. Both results carry the

sign of x and are floats.

math.trunc(x) Return the Real value x truncated to an Integral (usually an integer).
Delegates to x. _trunc__ ().

Note that frexp() and modf() have a different call/return pattern than their C equivalents:

they take a single argument and return a pair of values, rather than returning their second

return value through an ‘output parameter’ (there is no such thing in Python).

For the ceil(), floor(), and modf() functions, note that all floating-point numbers of suffi-

ciently large magnitude are exact integers. Python floats typically carry no more than 53

bits of precision (the same as the platform C double type), in which case any float x with

abs(x) >= 2**52 necessarily has no fractional bits.

9.7.1.2 Power and logarithmic functions

math.exp(x) Return e**x.

math.expm1(x) Return e**x - 1. For small floats x, the subtraction in exp(x) - 1 can
result in a significant loss of precision; the expm1() function provides
a way to compute this quantity to full precision:

>>>>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (1le-5) # result accurate to full precision

1.0000050000166668e-05
math.log(x[, base]) = With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as

log(x)/log(base).

math.log1p(x) Return the natural logarithm of 1+x (base e). The result is calculated
in a way which is accurate for X near zero.

math.log2(x) Return the base-2 logarithm of x. This is usually more accurate than
log(x, 2).

math.log10(x) Return the base-10 logarithm of x. This is usually more accurate than
log(x, 10).

math.pow(x, y) Return x raised to the power y. Exceptional cases follow Annex ‘F’

of the C99 standard as far as possible. In particular, pow(1.0, x) and
pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If
both x and y are finite, x is negative, and y is not an integer then
pow(X, y) is undefined, and raises ValueError.
Unlike the built-in ** operator, math.pow() converts both its arguments to type float. Use
** or the built-in pow() function for computing exact integer powers.

math.sqrt(x) Return the square root of x.

Ian D Chivers Chapter 9

142

Functions

9.7.1.3 Trigonometric functions

math.acos(X)
math.asin(X)
math.atan(x)

math.atan2(y, x)

math.cos(x)

math.hypot(x, y)

math.sin(x)

math.tan(x)

Return the arc cosine of x, in radians.
Return the arc sine of x, in radians.
Return the arc tangent of x, in radians.

Return atan(y / x), in radians. The result is between -pi and pi. The
vector in the plane from the origin to point (x, y) makes this angle
with the positive X axis. The point of atan2() is that the signs of both
inputs are known to it, so it can compute the correct quadrant for the
angle. For example, atan(l) and atan2(1, 1) are both pi/4, but
atan2(-1, -1) is -3*pi/4.

Return the cosine of x radians.

Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the
vector from the origin to point (X, y).

Return the sine of x radians.

Return the tangent of x radians.

9.7.1.4 Angular conversion

math.degrees(x)

math.radians(x)

Convert angle x from radians to degrees.

Convert angle x from degrees to radians.

9.71.5 Hyperbolic functions
Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas

instead of circles.
math.acosh(x)
math.asinh(x)
math.atanh(x)
math.cosh(x)
math.sinh(x)
math.tanh(x)

Return the inverse hyperbolic cosine of x.
Return the inverse hyperbolic sine of x.
Return the inverse hyperbolic tangent of x.
Return the hyperbolic cosine of x.

Return the hyperbolic sine of x.

Return the hyperbolic tangent of x.

9.7.1.6 Special functions

math.erf(x)

Return the error function at x.

The erf() function can be used to compute traditional statistical functions such as the cumu-
lative standard normal distribution:

def phi(x):

'"Cumulative distribution function for the standard nor-
mal distribution'

return
math.erfc(x)

math.gamma(x)

math.lgamma(x)

(1.0 + erf(x / sqgrt(2.0))) / 2.0

Return the complementary error function at x. The complementary er-
ror function is defined as 1.0 - erf(x). It is used for large values of x
where a subtraction from one would cause a loss of significance.
Return the Gamma function at x.

Return the natural logarithm of the absolute value of the Gamma
function at x.

9.71.7 Constants

math.pi

Chapter 9

The mathematical constant p = 3.141592..., to available precision.

Ian D Chivers

Functions 143

math.e The mathematical constant e = 2.718281..., to available precision.

math.inf A floating-point positive infinity. (For negative infinity, use
-math.inf.) Equivalent to the output of float('inf").

math.nan A floating-point “not a number” (NaN) value. Equivalent to the out-
put of float('nan').

CPython implementation detail: The math module consists mostly of thin wrappers around
the platform C math library functions. Behavior in exceptional cases follows Annex F of
the C99 standard where appropriate. The current implementation will raise ValueError for
invalid operations like sqrt(-1.0) or log(0.0) (where C99 Annex F recommends signalling
invalid operation or divide-by-zero), and OverflowError for results that overflow (for exam-
ple, exp(1000.0)). A NaN will not be returned from any of the functions above unless one
or more of the input arguments was a NaN; in that case, most functions will return a NaN,
but (again following C99 Annex F) there are some exceptions to this rule, for example
pow(float('nan'), 0.0) or hypot(float('nan'), float('inf")).

Note that Python makes no effort to distinguish signalling NaNs from quiet NaNs, and be-
havior for signalling NaNs remains unspecified. Typical behavior is to treat all NaNs as
though they were quiet.

9.8 Example 7 - testing out the maths functions
The following program tests out the maths functions.

import math
i=1

a=10

b=20
p=1.00000000001
g=1.00000000002

x=1.0

y=2.0

print ("math.ceil (x) = " , math.ceil(x))
print ("math.copysign(x, y) = " , math.copysign(x, vVy))
print ("math. fabs(x) = " , math.fabs (x))
print ("math.factorial (x) = " , math.factorial (x))
print ("math.floor (x) = " , math.floor (x))
print ("math.fmod(x, y) = ", math.fmod(x, Vy))
print ("math. frexp(x) = ", math.frexp(x))
print ("math.gcd(a, b) = ", math.gcd(a, b))
print ("math.isclose(p,q) = " , math.isclose(p,q))
print ("math.isfinite (x) = " , math.isfinite(x))
print ("math.isinf (x) = " , math.isinf (x))
print ("math.isnan (x) = " , math.isnan(x))
print ("math.ldexp(x, i) = " , math.ldexp(x, 1))
print ("math.modf (x) = " , math.modf (x))

print ("math.remainder(x, vy)) " , math.remainder (x, vVy))
print ("math.trunc(x) = " , math.trunc(x))
print ("math.exp(x) = ", math.exp(x))
print ("math.expml (x) = ", math.expml (x))
print ("math.log(x) = ", math.log(x))
print ("math.loglp(x) = ", math.loglp(x))

Ian D Chivers Chapter 9

144 Functions

print ("math.log2 (x) = ", math.log2(x))
print ("math.loglO (x) = " , math.loglO(x))
print ("math.pow(x, y) = ", math.pow(x, Vv))
print ("math.sqgrt (x) ", math.sqrt())
print ("math.acos (x) = " , math.acos (x))
print ("math.asin(x) = " , math.asin(x))
print ("math.atan(x) = " , math.atan(x))
print ("math.atan2 (y, x) = ", math.atan2(y, x))
print ("math.cos(x) = " , math.cos (x))
print ("math.hypot (x, y) = " , math.hypot(x, vy))
print ("math.sin(x) = ", math.sin (x))
print ("math.tan(x) = " , math.tan (x))
print ("math.degrees (x) = " , math.degrees(x))
print ("math.radians (x) = " , math.radians (x))
print ("math.acosh(x) = " , math.acosh (x))
print ("math.asinh (x) = " , math.asinh(x))

print("math.atanh(x)) = " , math.atanh (x))
print ("math.cosh(x) = " , math.cosh (x))
print ("math.sinh(x) = " , math.sinh(x))
print ("math.tanh(x) = " , math.tanh (x))
print ("math.erf (x) = " , math.erf (x))
print ("math.erfc(x) = " , math.erfc(x))
print ("math.gamma (x) = " , math.gamma (x))
print ("math.lgamma (x) = " , math.lgamma (x))
print ("math.pi = " , math.pi)

print ("math.e = " , math.e)

print ("math.tau = " , math.tau)

print ("math.inf = " , math.inf)

print ("math.nan = " , math.nan)

print (math.e)

Here is the output.

math.ceil (x) = 1
math.copysign(x, y) = 1.0
math.fabs (x) = 1.0
math.factorial (x) = 1
math.floor (x) = 1
math.fmod (x, y) = 1.0
math. frexp(x) = (0.5, 1)
math.gcd(a, b) = 10
math.isclose(p,q) = True
math.isfinite (x) = True
math.isinf (x) = False
math.isnan (x) = False
math.ldexp(x, 1) = 2.0
math.modf (x) = (0.0, 1.0)
math.trunc(x) = 1

math.exp (x) = 2.718281828459045
math.expml (x) 1.718281828459045
math.log(x) = 0.0

Chapter 9 Ian D Chivers

math.loglp (x)
math.log2 (x) =
math.loglO (x)
math.pow(x, y) =
math.sqgrt (
math.acos (
math.asin(
math.atan (
math.atan?2 (
math.cos (x)
math.hypot (x, y) =
math.sin(x) =
math.tan(x) =
math.degrees (x) =
math.radians (x) =
math.acosh (x) =
math.asinh (x)
math.cosh (x)
math.sinh (
math.tanh (
math.erf (x) =
math.erfc(x) =
math.gamma (x)
math.lgamma (x) =
math.pi =

math.e =
math.tau =
math.inf =
math.nan =

X
X
X
X

)

)

)

) =
YI

X)

(x
(x

X)
X)

Functions

.6931471805599453

o © O o

.0
.5707963267948966
.7853981633974483
1.1071487177940904
0.5403023058681397
2.23606797749979
0.8414709848078965
1.5574077246549023
57.29577951308232
0.017453292519943295
0.0
0.8813735870195429
1.5430806348152437
1.1752011936438014
0.7615941559557649
0.842700792949715
0.157299207050285
1.0
0.0
3.141592653589793
2.718281828459045
6.283185307179586
inf
nan

0
0
0
1.
1
0
1
0

145

This is consistent with the use of the C run time maths library and gives double as the un-
derlying type. What about the two commented out lines?

9.9 Example 8 - math module sin function
The example uses the plain Python array type to hold a set of angles in degrees. We use a

couple of the build in math modules functions to print out the sines of these angles.

import math
import array
angles=array.ar-

ray('xz',(-1,0,1,29,30,31,44,45,46,59,60,61,89,90,911])

print (type (angles))
1=1en (angles)
for i in range(0,1):

print (" {:4d} {:20.16f}

math.sin (math.radians (angles[i]))))

Here is the output.

<class 'array.array'>

-1 -0.0174524064372835
0 0.0000000000000000

Ian D Chivers

".format (angles[i],

Chapter 9

146 Functions

1 0.0174524064372835
29 0.4848096202463371
30 0.4999999999999999
31 0.5150380749100542
44 0.6946583704589973
45 0.7071067811865475
46 0.7193398003386512
59 0.8571673007021123
60 0.8660254037844386
61 0.8746197071393957
89 0.9998476951563913
90 1.0000000000000000
91 0.9998476951563913

9.10 Example 9 - math module using numpy arrays
This is a variant of the previous using numpy arrays instead.

import math
import numpy
angles=numpy.array (
[-1,0,1,29,30,31,44,45,46,59,60,61,89,90,911])
print (type (angles))
1=1en (angles)
for i in range(0,1):

print (" {:4d} {:20.16f} ".format (angles[i],
math.sin (math.radians (angles[i]))))

Here is the output.

<class 'numpy.ndarray'>

-1 -0.0174524064372835
0 0.0000000000000000
1 0.0174524064372835

29 0.4848096202463371

30 0.4999999999999999

31 0.5150380749100542

44 0.6946583704589973

45 0.7071067811865475

46 0.7193398003386512

59 0.8571673007021123

60 0.8660254037844386

61 0.8746197071393957

89 0.9998476951563913

90 1.0000000000000000

91 0.9998476951563913

The output is the same as in the previous example.

9.11 Example 10 - math module using a pi shortcut

In this example we use introduce the idea of a short cut for math.pi. We also introduce the
idea of a main program method.

Chapter 9 Ian D Chivers

Functions 147

import math
PI = math.pi

def area of circle(radius):
area=PI*radius**2
return (area)

def main () :

def read radius():
r = float (input (" Type in the radius ? "))
return (r)

r=read radius|()

print (" Area of circle is {0:10.4f} ".format (
area of circle(r)))

Al

if (__name == " main_ "):
main ()
Here is the output.
Type in the radius ? 10
Area of circle 1is 314.1593
Note the following
e The statement PI = math.pi provides with a shorthand way of referencing the
mathematical constant 7 in our Python program;
e We have a main() function which has an internal function read_radius()
e The local variable r in read radius() is internal to the function;

e The variable r in the main() function is local to the main() function and inde-
pendent of the variable r in the read radius() function;

e In the examples we have seen so far we have implicitly used the main() function
in Python. In this example we make explicit the fact that we have a main() func-
tion;

e The following code

if (_name == " main "):
main ()
calls the main() function, to start the execution. The if test returns true if the
module is executed by the interpreter (which it is in this case). The if test re-
turns false when the module is imported into another module.

9.12 Fibonacci implementations
Here we look at three implementations of the Fibonnaci series.

Ian D Chivers Chapter 9

148 Functions

9.13 Example 11 - Using generators

imperative
generators

def fibonacci(n, first=0, second=1l):
for i in range (n):
yield first # Return current iteration
first, second = second, first + second

print ([x for x in fibonacci (10)1])

9.14 Example 12 - Iterative

iterative

def fibonacci (n):
first, second = 0, 1
for i in range(n):
print (first) # Print current iteration
first, second = second, first + second #Calculate
next values

fibonacci (10)

9.15 Example 13 - Recursive

recursive

def fibonacci(n, first=0, second=1l):
if n == 1:
return [first]
else:
return [first] + fibonacci(n - 1, second, first +
second)

print (fibonacci (10))

Run these three examples.

9.16 Functional programming in Python

There is an appendix on functional programming for people without any background in this
area. Functional programming is one of several programming paradigms supported by Py-
thon. Simplistically functional programming decomposes a problem into a set of functions.
Functions only take inputs and produce outputs, and don’t have any internal state that af-
fects the output produced for a given input. Some well known functional languages include
the ML family (Standard ML, OCaml, and other variants) and Haskell. Here are some

sources.

https://docs.python.org/2/howto/functional.html
http://www.ibm.com/developerworks/library/l-prog/index.html

Python has a number of tools that are useful in functional programming:

Chapter 9 Ian D Chivers

Functions 149

e map(fuction,list)
e filter(function,list)
e reduce(function,list)
e lambda
e list comprehension
A for loop can be replaced with a map function.
List comprehensions enable us to build lists in a simple fashion.

Python supports the creation of anonymous functions (i.e. functions that are not bound to a
name) at runtime, using a construct called "lambda". This is not exactly the same as lambda
in functional programming languages, but it is a concept that's well integrated into Python
and is often used in conjunction with typical functional concepts like filter(), map() and re-
duce().

9.17 Example 14 - generating prime numbers

Here is a list comprehension example that generates prime numbers.

noprimes = [j for 1 in range(2, 10) for j in range(i*2, 100,
i)]
primes = [x for x in range (2, 100) if x not in noprimes]

print (primes)
Here is the output.

$ python3 1list comprehension 0l.py
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, ¢7, 71, 73, 79, 83, 89, 97]

9.18 Example 15 - list and lambda usage

Here is a combined list comprehension and lambda example.

words = 'The quick brown fox jumps over the lazy
dog'.split ()

print ("\n words are",end=" ")

print (words)

print ("\n\n List comprehension solution\n\n")

list comprenhension solution

stuff = [[w.upper(), w.lower (), len(w)] for w in words]
for 1 in stuff:
print (i)

print ("\n\n Lambda solution")
lambda solution
print ("\n\n")
stuff = map(lambda w: [w.upper(), w.lower(), len(w)], words)
for i in stuff:
print (i)

Here is the output.

$ python3 1list comprehension 02.py

Ian D Chivers Chapter 9

150 Functions
words are ['The', 'quick', 'brown', 'fox',
'the', 'lazy', 'dog']

List comprehension solution

['"THE', 'the', 3]
['"QUICK', 'quick', 5]
['"BROWN', 'brown', 5]
['"FOX', 'fox', 3]
["JUMPS', 'Jjumps', 5]
['OVER', 'over', 4]
['"THE', 'the', 3]
['LAZY', 'lazy', 4]
['DOG', 'dog', 3]
Lambda solution
['"THE', 'the', 3]
['"QUICK', 'quick', 5]
['"BROWN', 'brown', 5]
['"FOX', 'fox', 3]
["JUMPS', 'Jjumps', 5]
['OVER', 'over', 4]
['"THE', 'the', 3]
['LAZY', 'lazy', 4]
['DOG', 'dog', 3]

Here are some more examples.

9.19 Example 16 - functional example
Here is the first example.

x = [1,2,3]
print (" \n for i in x ", end=" ")
for i in x:

print (i,end=" ")
print (" \n for i in iter (x) ",end=" ")
for i in iter(x):

print (i,end=" ")
print (" \n list(x iterator)) ",end=" ")
X lterator = iter(x)
print (list(x iterator))
print (" list (x) ",end=" ")
print (list (x))
square lambda y: y*y
cube = lambda y: y*y*y

Chapter 9 Ian D Chivers

'"Jjumps',

'over',

Functions 151

reciprocal = lambda y: 1/y

z=map (square, x)

print ("\n Square ",end=" ")
print (list(z))

z=map (cube, x)

print (" Cube ",end=" ")
print (list(z))

z=map (reciprocal, x)

print (" Reciprocal ",end=" ")
print (list(z))

o~ o~ o~ o~ o~ o~ o~ o~

Here is the output.

python3 fun 0l.py

for i in x 1 2 3

for i in iter (x) 1 2 3

list (x_iterator)) (1, 2, 3]

list (x) (1, 2, 3]

Square (1, 4, 9]

Cube (1, 8, 27]

Reciprocal [1.0, 0.5, 0.3333333333333333]

We have three functions, square, cube and reciprocal.
We then use the map statement to invoke the functions on some data.

9.20 Example 17 - functional example
Here is the second example.

days = ("Monday", "Tuesday", "Wednesday", "Thursday", "Fri-
day","Saturday", "Sunday")
for day in days:
print (day)
print (days)
uppercase = lambda x: x.upper/()
DAYS=map (uppercase,days)
print (1list (DAYS))

Here is the output.

$ python3 fun 02.py

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

("Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday', 'Sunday')

['MONDAY', 'TUESDAY', 'WEDNESDAY', 'THURSDAY', 'FRIDAY',
'SATURDAY', 'SUNDAY']

Ian D Chivers Chapter 9

152 Functions

9.21 Example 18 - functional example variant using the array module

Here is the third example. It is a simple variant of 1, using the Python intrinsic array mod-
ule.

import array
x = array.array('I',[1,2,3])
print (" \n for i in x ",end=" ")
for i in x:

print (i,end=" ")
print (" \n for i in iter (x) ",end=" ")
for i in iter(x):

print (i,end=" ")

print (" \n list(x iterator)) ",end=" ")
X lterator = iter(x)

print (list(x iterator))

print (" list (x) ",end=" ")
print (list (x))

square = lambda y: y*y

cube = lambda y: y*y*y
reciprocal = lambda y: 1/y

z=map (square, x)

print ("\n Square ", end=" ")
print (list (z))

z=map (cube, x)

print (" Cube ",end=" ")
print (list (z))

z=map (reciprocal, x)

print (" Reciprocal ",end=" ")
print (list (z))

The output is the same as the first example.

9.22 Example 19 - functional variant using the numpy module
Here is the fourth example. This is a variant of the last using the Numpy module.

import numpy
X = numpy.array([1,2,3])
print (" \n for i1 in x ",end=" ")
for i in x:

print (i,end=" ")
print (" \n for 1 in iter (x) ",end=" ")
for i in iter (x):

print (i,end=" ")

print (" \n list(x iterator)) " end=" ")
X lterator = iter(x)

print (list(x iterator))

print (" list (x) ",end=" ")
print (list (x))

square = lambda y: y*y

Chapter 9 Ian D Chivers

Functions 153

cube = lambda y: y*y*y
reciprocal = lambda y: 1/y

z=map (square, x)

print ("\n Square ",end=" ")
print (list(z))

z=map (cube, x)

print (" Cube ",end=" ")
print (list(z))

z=map (reciprocal, x)

print (" Reciprocal ",end=" ")
print (list(z))

o~ o~ o~ o~ o~ o~ o~ o~

The output is the same as the first and third examples.

9.23 Problems

1. Write a program that calculates the sine, cosine and tangent of angles between -1 and 91
degrees, at one degree intervals.

2. Write a program that reads in the lengths a and b of two sides of a right angled triangle.
Calculate the hypotenuse c. Use the sqrt function.

3. Write a program that will read in the lengths a and b of two sides of a triangle and the
angle in between them 0 (in degrees). Calculate the third size ¢ using the cosine rule.

¢ =a’ +b* —2abcosd
4. Stirling's approximation for large n is given by

n!=2mn ()"

Write a function in Python for this function and also write a program to test out the func-
tion for a value of 50. Do the results agree with the earlier example?

Ian D Chivers Chapter 9

154 Object oriented programming and classes in Python

Russell’s theory of types leads to certain complexities in the foundations of mathematics,...
Its interesting features for our purposes are that types are used to prevent certain erroneous
expressions from being used in logical and mathematical formulae; and that a check against
violation of type constraints can be made purely by scanning the text, without any knowl-
edge of the value which a particular symbol might happen to have.

C. A. R. Hoare, Structured Programming.

It is said that Lisp programmers know that memory management is so important that it can-
not be left to the users and C programmers know that memory management is so important
that is cannot be left to the system.

anon

10 Object oriented programming and
classes in Python

User defined data types are an essential part of general purpose programming languages.
Early languages provided this functionality via concrete data types, later languages by ab-
stract data types.

Python provides the ability to program user defined types using classes. In this chapter we
will look at some simple examples highlighting the Python syntax.

10.1 Example 1 - base shape class
Here is the source code.

#

c1001.py

#

class shape:

def init (self,x,y):
self.x=x
self.y=y

def get x(self):
return (self.x)

def get y(self):
return (self.y)

def set x(self,x):
self.x=x

def set y(self,y):
self.y=y

def draw(self):
print (" x = {0:4d}".format (self.x))
print (" y = {0:4d}".format (self.y))

Chapter 10 Ian D Chivers

Object oriented programming and classes in Python 155

def main () :

s=shape (10, 20)
s.draw ()
s.set x(100)
s.set _y(200)
s.draw ()
print (s.get x())
print(s.get y())
if (__name == " main_ "):
main ()

Here is the output.

X = 10
y = 20
x = 100
y = 200
100
200

Note that in this example we have the source code all in one file. We can use shape as a
constructor name.

10.2 Example 2 - variation using modules

In this example we have a simple variant of the above using modules.
Here is the source code for the shape module.

#

shape.py

#
class shape:

def init (self,x,y):

self.x=x
self.y=y

def get x(self):
return (self.x)

def get y(self):
return (self.y)

def set x(self,x):
self.x=x

def set y(self,y):
self.y=y

def draw(self):

Ian D Chivers Chapter 10

156 Object oriented programming and classes in Python

print (" x = {0:4d}".format (self.x))
print (" y = {0:4d}".format (self.y))

The file is called shape.py.
Here is the source code for the test program.

#
4 c1002.py
#

import shape
def main () :

s=shape.shape (10, 20)
s.draw ()

s.set x(100)

s.set y(200)
s.draw ()

print (s.get x())
print(s.get y())

if (_name == " main "):
main ()

Here s the output from running the test program.

X = 10
y = 20
X = 100
y = 200
100
200

Note the syntax to invoke the constructor. We can't use shape on its own. Compare this to
the first example.

10.3 Example 3 - a circle derived class
Here is the source code for the circle class.

#

circle.py

#

import shape
class circle (shape.shape):

def init (self,x,y,r):
self.x=x
self.y=y
self.r=r

def get radius(self):
return(self.radius)

Chapter 10 Ian D Chivers

Object oriented programming and classes in Python

def set radius(self,r):
self.radius=r

def draw(self):
print (" x = {0:4d}".format (self.x))
print (" y = {0:4d}".format (self.y))
print (" r = {0:4d}".format (self.r))

Here is the test program.

#
c1003.py
#

import circle
def main() :

c=circle.circle(10,20,30)
c.draw ()

c.set x(100)

c.set y(200)

c.set radius (300)
c.draw ()

print (c.get x())
print(c.get y())

print (c.get radius())

if (_ _name == " main_ "):
main ()

157

10.4 Example 4 - test program for the shape and circle classes

Here is the complete source code.

#

c1004.py

#

import shape
import circle

def main () :

s=shape.shape (10, 20)
s.draw ()

s.set x(100)

s.set _y(200)
s.draw ()

print (s.get x())
print(s.get y())

Ian D Chivers

Chapter 10

158 Object oriented programming and classes in Python

c=circle.circle(100,200,300)

c.draw ()

c.set x(111)

c.set y(222)

c.set radius (333)

c.draw ()
print (c.get x())
print(c.get y())
print (c.get radius())

if (__name == " main_ "):
main ()

Here is the output.

X = 10
y = 20
x = 100
y = 200

100

200
x = 100
y = 200
r = 300
x = 111
y = 222
r = 300

111

222

333

10.5 Example 5 - polymorphism and dynamic binding

This example illustrates polymorphism and dynamic binding in Python. Here is the code.

#
c1005.py
#

import shape
import circle

def main () :

s=shape.shape (10, 20)
c=circle.circle(100,200,300)

shape array = []

shape array.append(s)
shape array.append(c)

for i in range(0,2):

Chapter 10 Ian D Chivers

Object oriented programming and classes in Python

shape array[i].draw()

if (__name == " main
main ()

Here is the output.

X = 10
y = 20
x = 100
y = 200
r = 300

10.6 Example 6 - data structuring using the Met Office data

Al

) :

159

This example looks at creating an example in Python that works with the Met Office his-

toric data.
Here is the program source.

#
weather 01
#

class weather:

CONSTRUCTOR

def init (self,year,month, tmax,tmin,af days,rain,sun):

self.year=year
self.month=month

self.tmax = tmax
self.tmin = tmin
self.af days = af days
self.rain = rain
self.sun = sun

GETTERS

def get year (self):
return (self.year)

def get month(self):
return (self.month)

def get tmax(self):
return (self.tmax)

def get tmin(self):
return (self.tmin)

def get af days(self):

Ian D Chivers

Chapter 10

160 Object oriented programming and classes in Python

return (self.af days)

def get rain(self):
return (self.rain)

def get sun(self):
return (self.sun)

SETTERS

def set year (self,year):
self.year=year

def set month(self,month):
self.month=month

def set tmax(self, tmax):
self.tmax=tmax

def set tmin(self,tmin):
self.tmin=tmin

def set af days(self,af days):
self.af days=af days

def set rain(self,rain):
self.rain=rain

def set sun(self,sun):
self.sun=sun

DISPLAY

def display(self):
print (" {0:4d}".format (self.year),end=" ")
print (" {0:4d}".format (self.month),end=" ")
print (" {0:4.1f}".format (self.tmax),end=" ")
print (" {0:4.1f}".format (self.tmin),h end=" ")
print (" {0:3d}".format (self.af days),end=" ")
print (" {0:5.1f}".format (self.rain),end=" ")
print (" {0:5.1f}".format (self.sun))

def display heading(self):

print (" Year Month tmax tmin af
sun")

print (" degC degC days
hours™)

Chapter 10 Ian D Chivers

rain

mm

Object oriented programming and classes in Python 161

#
End of class

#
def main () :

s=weather(2018,1,20.0,10.0,5,100.0,5.0)
print ("Using object methods\n")
s.display heading ()
s.display ()
print ("\nUsing getters\n")
print (" {0:4d}".format (s.get year ())
print (" {0:4d}".format (s.get month ())
print (" {0:4.1f}".format(s.get tmax())
print (" {0:4.1f}".format(s.get tmin()) ,end=" "
()
()
()

-

print (" {0:3d}".format (s.get _af days()
print (" {0:5.1f}".format(s.get rain()
print (" {0:5.1f}".format(s.get sun()

~
~ ~— ~—

Al

if (__name == " main_ "):
main ()

Note that this version says nothing about the type of the data components in the Met Office
data records. We will look at an improved way of working with this data using the strong
data typing facilities provided by the numpy class in the next chapter.

10.7 Problems
1. Compile and run the examples.
2. Add a rectangle class to the third and fourth examples.

Ian D Chivers Chapter 10

162 IO

Common sense is the best distributed commodity in the world, for every man is convinced
that he is well supplied with it.

Descartes.

11 10

In this chapter we will look at the the facilities in Python for input and output. The follow-
ing is taken from the on line documentation

e The i0o module provides Python’s main facilities for dealing with various types
of 1/0. There are three main types of I/O: text I/O, binary I/O and raw I/O.
These are generic categories, and various backing stores can be used for each of
them. A concrete object belonging to any of these categories is called a file ob-
ject. Other common terms are stream and file-like object.

e Independently of its category, each concrete stream object will also have various
capabilities: it can be read-only, write-only, or read-write. It can also allow arbi-
trary random access (seeking forwards or backwards to any location), or only se-
quential access (for example in the case of a socket or pipe).

e All streams are careful about the type of data you give to them. For example
giving a str object to the write() method of a binary stream will raise a
TypeError. So will giving a bytes object to the write() method of a text stream.

We start by providing a small number of examples.

11.1 Example 1 - reading from a file using substrings

This example is taken from the chapter on strings. The key is the open statement, where we
link an internal variable with an external file. We then use the readline method.

import numpy as np

data file="cwmystwythdata.txt"

nmonths=12

cmsum=0.0

imperial sum = 0.0

imperial average = 0.0

X = np.empty([nmonths] , dtype=np.float64)

f=open(data file)

print (" ** Skipping header lines ** \n")

for i in range(0,7):
line=f.readline()

print (" ** Skipping 1959 ** \n")

for i in range(0,12):
line=f.readline()

print (" ** Skipping 1960 ** \n")

for i in range(0,12):
line=f.readline()

print (" ** Skipping 1961 ** \n")

for i in range(0,9):
line=f.readline()

print (" ** Skipping 1962 ** \n")

Chapter 11 Ian D Chivers

IO

for i in range(0,8):
line=f.readline ()

print (" ** Skipping 1963 ** \n")

for i in range(0,10):
line=f.readline ()

print (" ** Reading 1964 ** \n")

for i in range(0,12):
line=f.readline ()
x[i]=(float) (1line[36:42])

print (" {0:6.1f} ".format(x[i]))

print (" ** mms ** ")

print (" {0:6.1f} ".format(x.sum()))
print (" {0:6.1f} ".format ((x.sum()/nmonths)))

imperial sum=x.sum()/25.4

imperial average=imperial sum/nmonths

print (" ** inches ** ")

print (" {0:6.1f} ".format (imperial sum))
print (" {0:6.1f} ".format (imperial average))

Here is the output.

$ ** Skipping header lines *x*
** Skipping 1959 *x*
** Skipping 1960 *x*
** Skipping 1961 **
** Skipping 1962 *x*
** Skipping 1963 *x*
** Reading 1964 **

83.
38.
67.
76.
90.
83.
177.
180.
66.
171.
174.
334.
* % mms * %
1543.9
128.7
** inches **

W OO o UlO g D wo

Ian D Chivers

163

Chapter 11

164 IO

60.8
5.1

So we are using the file.readline method.

11.2 Example 2 - reading the same file using the split() method

Here is the source file.

import numpy as np
data file="cwmystwythdata.txt"
nmonths=12
cmsum=0.0
imperial sum = 0.0
imperial average = 0.0
X = np.empty([nmonths] , dtype=np.float64)
f=open(data file)
print (" ** Skipping header lines ** \n")
for i in range(0,7):

line=f.readline ()
print (" ** Skipping 1959 ** \n")
for i in range(0,12):

line=f.readline ()
print (" ** Skipping 1960 ** \n")
for i in range(0,12):

line=f.readline()
print (" ** Skipping 1961 ** \n")
for i in range(0,9):

line=f.readline ()
print (" ** Skipping 1962 ** \n")
for i in range(0,8):

line=f.readline ()
print (" ** Skipping 1963 ** \n")
for i in range(0,10):

line=f.readline()
print (" ** Reading 1964 ** \n")
for i in range(0,12):

line=f.readline ()

r=0

columns=line.split ()

for data in columns:

if (r==5):
x[i]=(float) (data)
print (" {0:6.1f} ".format(x[i]))
r=r+1

print (" ** mms ** ")
print (" {0:6.1f} ".format(x.sum()))
print (" {0:6.1f} ".format ((x.sum()/nmonths)))
imperial sum=x.sum()/25.4
imperial average=imperial sum/nmonths
print (" ** inches ** ")
print (" {0:6.1f} ".format (imperial sum))

Chapter 11 Ian D Chivers

IO 165

print (" {0:6.1f} ".format (imperial average))

The output is as in the previous example.

11.3 Example 3 - internet file read

This example looks at reading a file that exists on the UK Met Office Historic Data site.
Visit

http://www.metoffice.gov.uk/public/weather/climate-his-
toric/#?tab=climateHistoric

for more information.

You may need to change the web address if the Met Office move things around. Here is a
valid address as of January 2017.
http://www.metoffice.gov.uk/pub/data/weather/uk/
climate/stationdata/cwmystwythdata.txt

We will read one data file. Being Welsh I have chosen the Cwmystwyth site. Here is the
program.

import time
import requests

def main() :
start time=time.time ()
print (" ** Start time xU" oend=" ")
print (start time)
cwmystwyth data=re-
quests.get ("http://www.metoffice.gov.uk/cli-
mate/uk/stationdata/cwmystwythdata.txt") .text
print (cwmystwyth data)
tl=time.time ()
file read=tl-start time
print (" ** Internet file read took xM" o end=" ")
print (" {0:12.6f}".format (file read))

if (_name == " main "):
main ()

Here is an extract of the output.

Ian D Chivers Chapter 11

166 10
2009 12 5.2 -0.2 13 167.7
2010 1 3.4 -2.3 22 127.9
2010 2 4.8% -1.6%* 19* 70.4%
2010 3 8.7 0.8 16 102.0
2010 4 13.0 3.8 4 56.8
2010 5 14.2 4.7 4 71.5
2010 6 18.8 8.0 0 80.5
2010 7 17.3 11.9 0 209.3
2010 8 16.6 9.3 0 88.8
2010 9 16.3 8.7 1 181.2
2010 10 12.5% 5.2% 5% 108.0
2010 11 7.1% 0.5%* 11* 154.9%*
2010 12 3.1 -3.7 23 82.6
2011 1 5.8 -0.3 16 191.4
2011 2 8.3 3.1 5 165.8
2011 3 10.3 1.4 12 35.5

Site closed

** Internet file read took ** 0.179377

36.7
32.9
72.2%
119.
194.
207.
220.
80.
130.5
135.5%*
117.2*
73.3*
52.4%*
44 .7
43.5
145.0

W oo w w W

11.4 Example 4 - variation on the internet file read where we save the

file
Here is the source.

import time
import requests

def main () :
start time=time.time ()
print (" ** Start time
print (start time)
datafile="cwmystwyth.txt"
f=open (datafile, "w")
cwmystwyth data=re-
quests.get ("http://www.metoffice.gov.uk/cli-
mate/uk/stationdata/cwmystwythdata.txt") .text
f.write(cwmystwyth data)
tl=time.time ()
file read=tl-start time

* %N , end="

print (" ** Internet file read took *x oend="
print (" {0:12.6f}".format(file read))
if (_ _name == " main_ "):

Chapter 11 Ian D Chivers

")

")

IO 167

main ()
Timing is similar to the previous.
11.5 Example 5 - reading all of the station data files with timing
Here is the source.
import time
import requests

def main () :

start time=time.time ()
print (" ** Start time **M, o end=" ")
print (start time)

n_stations = 37
base address =

"http://www.metoffice.gov.uk/pub/data/weather/uk/cli-
mate/stationdata/"

station names = ["aberporthdata.txt" ,

"armaghdata.txt" , "ballypatrickdata.txt",

"bradforddata.txt" , "braemardata.txt" ,
"cambornedata.txt",

"cambridgedata.txt" , "cardiffdata.txt" ,
"chivenordata.txt",

"cwmystwythdata.txt" , "dunstaffnagedata.txt",
"durhamdata.txt",

"eastbournedata.txt" , "eskdalemuirdata.txt" ,
"heathrowdata.txt",

"hurndata.txt" , "lerwickdata.txt" ,
"leucharsdata.txt",

"lowestoftdata.txt" , "manstondata.txt" ,
"nairndata.txt",

"newtonriggdata.txt" , "oxforddata.txt" ,
"paisleydata.txt",

"ringwaydata.txt" , "rossonwyedata.txt" ’
"shawburydata.txt",

"sheffielddata.txt" , "southamptondata.txt" ,
"stornowaydata.txt",

"suttonboningtondata.txt" , "tireedata.txt" ,
"valleydata.txt",

"waddingtondata.txt" , "whitbydata.txt" ,

"wickairportdata.txt",
"yeoviltondata.txt"]

for 1 in range(0,n stations):

print (station names([1i])

Ian D Chivers Chapter 11

168

complete address

IO

base address + station names[i]

f=open(station names[i], "w")

station data

requests.get (url=complete address) .text

f.write(station data)

f.close ()

tl=time.time ()

file read=tl-start time

* %

print ("
print ("

Al

if (_ name
main ()

Here is the output.

** Start time
aberporthdata.txt
armaghdata.txt
ballypatrickdata.txt
bradforddata.txt
braemardata.txt
cambornedata.txt
cambridgedata.txt
cardiffdata.txt
chivenordata.txt
cwmystwythdata.txt
dunstaffnagedata.txt
durhamdata.txt
eastbournedata.txt
eskdalemuirdata.txt
heathrowdata.txt
hurndata.txt
lerwickdata.txt
leucharsdata.txt
lowestoftdata.txt
manstondata.txt
nairndata.txt
newtonriggdata.txt
oxforddata.txt
paisleydata.txt
ringwaydata.txt
rossonwyedata.txt
shawburydata.txt
sheffielddata.txt
southamptondata.txt
stornowaydata.txt

Internet file read took
{0:12.6f}".format (file read))

* %N , end="

")

main_ "):

* %

1549558759.968851

suttonboningtondata.txt

tireedata.txt
valleydata.txt
waddingtondata.txt

Chapter 11

Ian D Chivers

IO 169

whitbydata.txt
wickairportdata.txt
yeoviltondata.txt
** Internet file read took ** 6.891494
We now have all of the files saved locally.

On Unix and Linux there are a number of commans that are very useful when working with
text files, and they include

e wc - a utility that prints line, word and byute counts for files;
e diff -a utility that can be used to compare text files a line at a time;

e vi and vim - a powerful editor with extensive pattern matching, and powerful
command set;

e sed - a stream editor for manipulating text files;
e unix2dos - a utility to convert Unix text files to dos format;

e dos2unix - a utility to convert Windows text files to Unix format;

All of them have been used in the production of these notes and I have been using vi since
I worked at Imperial College in the 1970s. It is possible to install a Unix shell on a Win-
dows machine to gain the above functionality.

The following command
wc *data.txt

produces the following output after the running this example program.

945 6652 50557 aberporthdata.txt
2001 14046 106386 armaghdata.txt

699 4933 37070 ballypatrickdata.txt
1341 9424 71475 bradforddata.txt

730 5153 39054 braemardata.txt

493 3487 26511 cambornedata.txt

729 5141 38965 cambridgedata.txt

505 3574 27090 cardiffdata.txt

765 5391 40405 chivenordata.txt

626 4396 32556 cwmystwythdata.txt

580 4097 30776 dunstaffnagedata.txt
1677 11776 89188 durhamdata.txt

729 5140 38959 eastbournedata.txt
1305 9171 69361 eskdalemuirdata.txt

861 6065 45954 heathrowdata.txt

753 5308 40339 hurndata.txt
1066 7499 56889 lerwickdata.txt

753 5308 40328 leucharsdata.txt
1258 8855 66929 lowestoftdata.txt

939 6610 50040 manstondata.txt
1066 7508 56844 nairndata.txt

729 5141 38950 newtonriggdata.txt
2001 14044 106385 oxforddata.txt

729 5140 38987 paisleydata.txt

714 5013 37164 ringwaydata.txt
1066 7499 56953 rossonwyedata.txt

Ian D Chivers Chapter 11

170 IO

885 6232 47371 shawburydata.txt
1641 11524 87305 sheffielddata.txt
1752 12284 92910 southamptondata.txt
1755 12322 93469 stornowaydata.txt

729 5141 38956 suttonboningtondata.txt
1101 7744 58814 tireedata.txt
1066 7499 56959 wvalleydata.txt

873 6147 46663 waddingtondata.txt

698 4768 36275 whitbydata.txt
1269 8920 66963 wickairportdata.txt

661 4664 35479 yeoviltondata.txt

37490 263616 1995279 total

and we will use the line count data in several problems in the rest of the notes and exam-
ples. The line count data is the first column of output. This program was run at 18:50 on
the 1st May 2019. Running it today will produce updated information.

11.6 Example 6 - Writing to a set of files names generated within Py-
thon

This program creates 10 files, and generates part of the file name from the for loop index.

base file name="test file "

for i in range (1,11):
file name=base file name + str(i)
f=open(file name, 'w')
f.write(file name)
f.close ()

Run the program and do a Is or dir after running the program.

11.7 Example 7 - Copying a file and replacing missing values

This example can be used to replace the Met Office flag for missing data --- with -99 in the
new version.

Here is the source.

import numpy as np

input data file ="cwmystwythdata.txt"

output data file="cwmystwythdata after.txt"

nlines=626

fl=open (input data file)

f2=open (output data file,'w'")

for i in range(0,nlines+1):
line=fl.readline ()
after=line.replace("---","-99™)
f2.write (after)

fl.close()

f2.close ()

This program is easy to modify to replace the * character in the Met Office files.

11.8 Example 8 - creating an SQL file

Here is the source.

Chapter 11 Ian D Chivers

IO

import os

input data file ="cwmystwythdata.txt"
output data file="cwmystwythdata sqgl.txt"
#

header lines

#

nh="7

#

total lines
#

nt=626

fl=open (input data file)

f2=open (output data file,'w')

#

skip header lines

#

for i in range(0,nh):
line=fl.readline ()

#

process data lines

#

for i in range(0,nt-nh-1):
line=fl.readline ()
passl=line.replace("--- ","null")
pass2=passl.replace("---","null")
pass3=pass2.replace("*"," ™)
columns=pass3.split ()

pass4=" ("
for column in columns:
pass4 = pass4 + column + ","

l=len (pass4)
passb=pass4[0:1-1] + ")"

pass6 = pass5 + os.linesep
f2.write (passb)

fl.close ()

f2.close ()

11.9 Example 9 - Creating a csv file

Here is the source. It is a minor variation on the previous.

import os

input data file ="cwmystwythdata.txt"
output data file="cwmystwythdata.csv"
#

header lines

#

nh="7

#

total lines
#

Ian D Chivers

171

Chapter 11

172 IO

nt=626

fl=open (input data file)

f2=open (output data file,'w')

#

skip header lines

#

for i in range(0,nh):
line=fl.readline ()

#

process data lines

#

for i in range(0,nt-nh-1):
line=fl.readline ()
passl=line.replace("*"," ")
columns=passl.split ()

passz2=""
for column in columns:
pass?2 = pass2 + column + ","

1l=len (pass?2)
pass3=pass2[0:1-1]

passd4 = pass3 + os.linesep
f2.write (passié)

fl.close ()

f2.close ()

11.10 Example 10 - CSV files and the csv module

CSV stands for comma separated values. It is a commonly used file interchange format. The
csv module was introduced in Python 2.3 Here is a simple example program.

import csv
file name="lines per station.csv"
f=open(file name)
reader = csv.reader (f)
for row in reader:
print (row)

Here is the acutual csv file.

aberporth,877,7,870
armagh,1933,7,1926
ballypatrick, 631,7,624
bradford, 1273,7,1266
braemar, 661, 8, 653
camborne, 425,7,418
cambridge, 661,7,654
cardiff,437,7,430
chivenor, 697,7,690
cwmystwyth, 627,77, 620
dunstaffnage, 512, 7,505
durham, 1609,7, 1602
eastbourne, 661,7, 654

Chapter 11 Ian D Chivers

IO

eskdalemuir,1237,7,1230
heathrow, 793, 7,786
hurn, 685,7,678
lerwick, 998, 7,991
leuchars, 685,7,678
lowestoft,1189,8,1181
manston, 871, 7,864
nairn, 997,8, 989
newtonrigg, 661,7,654
oxford,1933,7,1926
paisley,661,7,654
ringway, 715,7,708
rossonwye, 998, 7,991
shawbury, 817,7,810
sheffield,1573,7,1566
southampton, 1752,8,1744
stornoway, 1687, 7,1680
suttonbonington, 661,7, 654
tiree,1033,7,1026
valley, 998,7,991
waddington, 805, 7,798
whitby, 629,8,621
wickairport,1201,7,1194
yeovilton,593,7,586

Here is the output.

['aberporth', '877', '7', '870']
['armagh', '1933', '7', '1926']
['ballypatrick', '631', '7', '624']
['bradford', '1273', '7', '1266']
['"braemar', 'o66l', '8', '653']
['camborne', '425', '7', '418']
['cambridge', '661', '7', '654']
['cardiff', '437', '7', '430"']
['chivenor', '697', '7', '690']
['cwmystwyth', '627', '7', '620']
['dunstaffnage', '512', '7', '505']
['durham', '1609', '7', 'le602']
['eastbourne', 'o6l', '7', '654"']
['eskdalemuir', '1237', '7', '1230']
['heathrow', '793', '7', '786"']
['hurn', 'e685', '7', '678']

[
[
[
[
[
[
[
[

'lerwick', '998', '7', '991"']
'leuchars' '685', '7', '678'"]
'lowestoft' '1189', '8', '1181"]
'manston', '871', '7', '864']
'nairn'’ '997', '8', '989"']
'newtonrlgg , 'oeol', '7', '654"']
'oxford', '1933', '7', '1926']
'paisley', 'o661', '7', '654']

Ian D Chivers

173

Chapter 11

174 IO

['ringway', '715', '7', '708"']
['rossonwye', '998', '7', '991"']
['shawbury', '817', '7', '810"']
['sheffield', '1573', '7', '1566']
['southampton', '1752', '8', '1744']
['stornoway', '1687', '7', '1680']
['suttonbonington', '661', '7', '654"']
['tiree', '1033', '7', '10206']
['valley', '998', '7', '991"']
['waddington', '805', '7', '798'"]
['whitby', '629', '8', '621']
['wickairport', '1201', '7', '1194"']
['yeovilton', '593', '7', '586']

As the file is read each row of the input data is parsed and converted into a list of strings.

11.11 Example 11 - CSV usage and data extraction

This example is a variation of the previous. In this one we extract the data from each row
of the CSV file and assign it to an array of the appropriate type.

Here is the source.

import csv

import numpy as np

file name="lines per station.csv"
n is always less than 128

n = 128
station name | total lines | header lines | data lines
f=open(file name)
met office data = csv.reader (f)
station names = ["" for x in range (n)]
total lines = np.zeros([n] , dtype=np.int32)
header lines = np.zeros([n] , dtype=np.int32)
data lines = np.zeros([n] , dtype=np.int32)
r = 0
for row in met office data:

station names[r] = row[0]

total lines|[r] = int(row[1l])

header lines|[r] = int(row[2])

data lines([r] = int(row[3])

r=r+1

for i in range(r):
print (station names[i],end=" : ")
print (total lines[i],end=" : ")
print (header lines[i],end=" : ")
print (data lines([i])

Here is the output.

aberporth : 877 : 7 : 870
armagh : 1933 : 7 : 1926
ballypatrick : 631 : 7 : 624
bradford : 1273 : 7 : 1266

Chapter 11 Ian D Chivers

IO

braemar : 661 : 8 : 653
camborne : 425 : 7 : 418
cambridge : 661 : 7 : 654
cardiff : 437 : 7 : 430
chivenor : 697 : 7 : 690
cwmystwyth : 627 : 7 : 620
dunstaffnage : 512 : 7 : 505
durham : 1609 : 7 : 1602
eastbourne : 661 : 7 : 654
eskdalemuir : 1237 : 7 : 1230
heathrow : 793 : 7 : 786

hurn : 685 : 7 : 678

lerwick : 998 : 7 : 991
leuchars : 685 : 7 : 678
lowestoft : 1189 : 8 : 1181
manston : 871 : 7 : 864

nairn : 997 : 8 : 989
newtonrigg : 661 : 7 : 654
oxford : 1933 : 7 : 1926
paisley : 661 : 7 : 654
ringway : 715 : 7 : 708
rossonwye : 998 : 7 : 991
shawbury : 817 : 7 : 810
sheffield : 1573 : 7 : 1566
southampton : 1752 : 8 : 1744
stornoway : 1687 : 7 : 1680
suttonbonington : 661 : 7 : 654
tiree : 1033 : 7 : 1026
valley : 998 : 7 : 991
waddington : 805 : 7 : 798
whitby : 629 : 8 : 621
wickairport : 1201 : 7 : 1194
yeovilton : 593 : 7 : 586

11.12 Example 12 - reading a met office file using the csv module
Here is the program.

import csv
import numpy as np
file name="cwmystwyth.csv"
n = 1024
year , month

, tmax , tmin , af days , rain , sun
f=open(file name)

met office data = csv.reader (f)
year array = np.zeros([n] , dtype=np.int32)
month array = np.zeros([n] , dtype=np.int32)

tmax array = np.zeros([n] , dtype=np.floatt4)
tmin array = np.zeros([n] , dtype=np.floatt4)
af days array = np.zeros([n] , dtype=np.int32)
rain array = np.zeros([n] , dtype=np.floatt4)

175

Ian D Chivers Chapter 11

176 IO

sun_array = np.zeros([n] , dtype=np.float6t4)
r = 0
#

for row in met office data:
print (row)

year array([r] = int(row([0])
month array[r] = int(row[1l])
tmax array([r] = float(row[Z2])
tmin array([r] = float(row[3])
af days arrayl[r] = int(row([4])
rain array[r] = float(row[5])
sun_array[r] = float(row[6])
r=r+1
#
print (" Actual lines = ",r)
rain sum = sum(rain array[0:r])
rain average = rain sum/r
#
print (" Average = {0:7.2f} mm ".format(rain average))
rain average=rain average/25.4
print (" {0:5.2f} ins".format (rain average))

Here is a sample of the output.

[' 2010 ', ' 12 ', ! 3.1 ', " -3.7 ', " 23 ', ! 82.6
Y, ! 52.4"]
[' 2011 ', r 0, ! 5.8 ', ! -0.3 ', ' 16 ', ' 191.4
v, 44 .7"]
[' 2011 ', 2 ', ! 8.3 ', 3. ', ! 5 ', ' 165.8
v, 43.5"]
[' 2011 ', 3 ', ' 10.3 ', ! .4 ', " 12 ', ! 35.5
', ' 145.0"']
Actual lines = 618
Average = 138.18 mm

5.44 ins

11.13 Example 13 - reading data using the genfromtxt method

In the OO chapter we had a simple data structuring example for working with the Met Of-
fice station data. This example had the disadvantage in that it used the default dynamic typ-
ing mechanism used in Python, which leaves the determination of type until run time,
which can cause programs to fail through incorrect parameter passing. Here is an example
using the Numpy genfromtxt method that is strongly typed and provides a better
enviornment for actually doing arithmetic on the data.

Here is the source.

import numpy as np

data file name="cwmystwythdata.txt"

matrix = np.genfromtxt(data file name, \
skip header=7 , \
skip footer=1 , \
usecols=(0,1,2,3,4,5,6), \

Chapter 11 Ian D Chivers

IO 177

autostrip=True , \

dtype= (int, int, float, float, int, float, float), \

missing values={"---"},\
)

print (" Type = ", type (matrix))

print (" Size = ",matrix.size)

print (matrix)

Here is an extract of the output.

Type = <class 'numpy.ndarray'>

Size = 618

[(1959, 1, 4.5, -1.9, 20, nan, 57.2)
(1959, 2, 7.3, 0.9, 15, nan, 87.2)
(1959, 3, 8.4, 3.1, 3, nan, 81.6)
(1959, 4, 10.8, 3.7, 1, nan, 107.4)
(1959, 5, 15.8, 5.8, 1, nan, 213.5)
(1959, 6, 16.9, 8.2, 0, nan, 209.4)
(1959, 7, 18.5, 9.5, 0, nan, 167.8)
(1959, 8, 19. , 10.5, 0, nan, 164.8)
(1959, 9, 18.3, 5.9, 0, nan, 196.5)
(1959, 10, 14.s8, 7.9, 1, nan, 101.1)
(1959, 11, 8.8, 3.9, 3, nan, 38.9)
(1959, 12, 7.2, 2.5, 3, nan, 19.2)

-2.3, 22, 127.9, 32.9)

(2010, 2, 4.8, -1.6, 19, 70.4, 712.2)
(2010, 3, 8.7, 0.8, 16, 102. , 119.3)
(2010, 4, 13. , 3.8, 4, 56.8, 194.3)
(2010, 5, 14.2, 4.7, 4, 71.5, 207.3)
(2010, 6, 18.8, 8. 0, 80.5, 220.)
(2010, 7, 17.3, 11.9, 0, 209.3, 80.3)
(2010, 8, 16.6, 9.3, 0, 88.8, 130.5)
(2010, 9, 16.3, 8.7, 1, 181.2, 135.5)
(2010, 10, 12.5, 5.2, 5, 108. , 117.2)
(2010, 11, 7.1, 0.5, 11, 154.9, 73.3)
(2010, 12, 3.1, -3.7, 23, 82.6, 52.4)
(2011, 1, 5.8, -0.3, 16, 191.4, 44.7)
(2011, 2, 8.3, 3.1, 5, 165.8, 43.5)
(2011, 3, 10.3, 1.4, 12, 35.5, 145.)]

We can now easily do arithmetic on Met Office data. The example that does some calcula-
tions is in the SQL chapter where we compare the SQL Met Office program with one based
on the above example.

Here are some notes about this example

e You must not use the file open method before calling the genfromtxt method.
Doing this will generate run time errors;

Ian D Chivers Chapter 11

178 IO

e The Met Office data file needs pre-processing to remove the * characters that in-
dicate estimated data. The * character at the end of line can be removed com-
pletely, and the * character in the middle of the lines can be replaced with a
space character. We used vi to do this.

e On a Windows platform you will probably need to use the unix2dos command to
resolve issues with carriage return and line feed characters.

We recommend installing vim on Windows as a relacement for vi. We also recommend in-
stalling cywin under Windows to provide unix functionality.

11.14 Example 14 - Writing a CSV file

Here is the source

import csv
import numpy as np

file name = "lines per station.csv"
output file = "output file.csv"
n is always less than 128
n = 128
station name | total lines | header lines | data lines
f=open(file name)
met office data = csv.reader (f)
station names = ["" for x in range (n)]
total lines = np.zeros([n] , dtype=np.int32)
header lines = np.zeros([n] , dtype=np.int32)
data lines = np.zeros([n] , dtype=np.int32)
r = 0
for row in met office data:

station names[r] = row[0]

total lines|[r] = int(row[1l])

header lines|[r] = int(row[2])

data lines[r] = int(row[3])

r=r+1

#for i in range(r):
print (station names[i],end=" : ")
print (total lines[i],end=" : ")
print (header lines[i],end=" : ")
print (data lines([i])
ofile=open (output file,'w")
output data = csv.writer (ofile,delimiter = ';'")
for i in range(r):

output data.writerow((station names[i], to-
tal lines[i],header lines[i],data lines[i]))

Here is the file created.

aberporth;877;7;870
armagh;1933;7;1926
ballypatrick;631;7;624
bradford;1273;7;1266
braemar; 661;8; 653
camborne;425;7;418

Chapter 11 Ian D Chivers

IO

cambridge; 661;7;654
cardiff;437;7;430
chivenor;697;7;690
cwmystwyth; 627;7;620
dunstaffnage;512;7;505
durham;1609;7;1602
eastbourne; 661;7;654
eskdalemuir;1237;7;1230
heathrow;793;7;786
hurn; 685;7;678
lerwick;998;7;991
leuchars; 685;7;678
lowestoft;1189;8;1181
manston;871;7; 864
nairn;997;8;989
newtonrigg;661;7;654
oxford;1933;7;1926
paisley;661;7;654
ringway;715;7;708
rossonwye; 998;7;991
shawbury;817;7;810
sheffield;1573;7;1566
southampton;1752;8;1744
stornoway;1687;7;1680
suttonbonington; 661;7;654
tiree;1033;7;1026
valley;998;7;991
waddington;805;7;798
whitby;629;8;621
wickairport;1201;7;1194
yeovilton;593;7;586

We used semicolon as the delimiter on output.

179

11.15 Example 15 - write large array as text file, element by element,

with timing
Here is the program.

import time

start time=time.time ()

print (" ** Start time

**" oend=" ")

print (start time)

import numpy as np

data file="large data file.txt"
f=open(data file,"w")

n=10000000

X = np.empty([n],dtype=np.int32)
tl=time.time ()

initialisation time=tl-start time

Ian D Chivers

Chapter 11

180 IO

print (" ** Variable creation *xW" o end="
")
print (" {0:12.6f}".format(initialisation time))
for i in range (0,n):
x[1]=1
t2=time.time ()
array time=t2-tl
print (" ** Array initialisation **xM", end=""
")
print (" {0:12.6f}".format (array time))
for i in range (0,n):
f.write("%12d \n" % x[i])
t3=time.time ()
write time=t3-t2
print (" ** Text array write, element by element **",end=" ")
print (" {0:12.6f}".format (write time))

Here is the output.

$ ** Start time **x
1447502147.7951984
** Variable creation xx 0.163511
** Array initialisation *x 1.940731
** Text array write, element by element ** 12.593289

The variable creation and array initialisation take very little time. The formatted output of
the array dominates the program execution time.

11.16 Example 16 - write large array as binary file , element by element,
with timing
Here is the program.
import time
start time=time.time ()
print (" ** Start time
**" end=" ")
print (start time)
import numpy as np
data file="large data file.dat"
f=open(data_ file, "wb")
n=10000000
X = np.empty([n],dtype=np.int32)
tl=time.time ()
initialisation time=tl-start time
print (" ** Variable creation
**" end=" ")
print (" {0:12.6f}".format(initialisation time))
for i in range (0,n):
x[1]=1
t2=time.time ()
array time=t2-tl
print (" ** Array initialisation
**" end=" ")

Chapter 11 Ian D Chivers

IO 181

print (" {0:12.6f}".format (array time))
for i in range (0,n):
f.write(x[1])
t3=time.time ()
write time=t3-t2
print (" ** Binary array write, element by element **",end="
")
print (" {0:12.6f}".format (write time))

Here is the output.

$ ** Start time **
1447502130.3637505
** Variable creation **x 0.153189
** Array initialisation xx 1.781546
** Binary array write, element by element ** 11.331043

Results are similar to the previous example.

11.17 Example 17 - write large array as binary file , whole array, with
timing

Here is the program.

import time

start time=time.time ()

print (" ** Start time xW oend=" ")

print (start time)

import numpy as np

data file="large data file.dat"

f=open(data_ file, "wb")

n=10000000

X = np.empty([n],dtype=np.int32)

tl=time.time ()

initialisation time=tl-start time

print (" ** Variable creation xW oend=" ")

print (" {0:12.6f}".format(initialisation time))

for i in range (0,n):
x[1]=1

t2=time.time ()

array time=t2-tl

print (" ** Array initialisation AN end=" ")

print (" {0:12.6f}".format (array time))

f.write (x)

t3=time.time ()

write time=t3-t2

print (" ** Binary array write, whole array **",end=" ")

print (" {0:12.6f}".format (write time))

Here is the output.

$ python3 cl1204.py

** Start time ** 1447502254.5353513
** Variable creation * % 0.152651
** Array initialisation xx 1.783490

Ian D Chivers Chapter 11

182 IO

** Binary array write, whole array ** 0.363772

We now have a considerable improvement in the write timing.

11.18 Example 18 - listing subdirectories
We will be using pathlib, which was new in version 3.4.

This module offers classes representing filesystem paths with semantics appropriate for dif-
ferent operating systems. Path classes are divided between pure paths, which provide purely
computational operations without I/O, and concrete paths, which inherit from pure paths but
also provide 1/O operations.

Here is a short program that prints all sub directories. We use two syntax variants.

#Listing subdirectories:
from pathlib import Path
p = Path('.")
for x in p.iterdir():
if x.is dir():
print (x)
print (" Now print posix details")
print ([x for x in p.iterdir() 1if x.is dir()])

Here is the output.

dbms
effbot
grayson
tkinter
___pycache
Now print posix details
[PosixPath ('dbms'), PosixPath('effbot'), PosixPath('grayson'),
PosixPath ('tkinter'), PosixPath(' pycache "')]

11.19 Example 19 - listing all Python files

Here is the source.

#Listing Python source files in this directory tree:
from pathlib import Path
p = Path('.")
for filename in p.glob ('**/* . py'):
print (filename)

Here is a segment of output.

c01201.py
c0201.py
c0202.py
c0203.py
c0301.py
c0302.py

tkinter/tt077.py
tkinter/tt078.py

Chapter 11 Ian D Chivers

IO 183

tkinter/tt079.py
tkinter/tt080.py
tkinter/tt090.py
tkinter/tt095.py
tkinter/tt100.py
tkinter/z.py

Try this on your system.

11.20 Background i/o technical information

A small amount of background material is covered in the sections below.

11.21 Text /O

Text I/O expects and produces str objects. This means that whenever the backing store is
natively made of bytes (such as in the case of a file), encoding and decoding of data is
made transparently as well as optional translation of platform-specific newline characters.

The easiest way to create a text stream is with open(), optionally specifying an encoding:
f = open("myfile.txt", "r", encoding="utf-8")

In-memory text streams are also available as StringlO objects:

f = 1i0.S5tringIO("some initial text data")

The text stream API is described in detail in the documentation of TextIOBase.

11.22 Binary I/O

Binary I/O (also called buffered I/O) expects and produces bytes objects. No encoding, de-
coding, or newline translation is performed. This category of streams can be used for all
kinds of non-text data, and also when manual control over the handling of text data is de-
sired.

The easiest way to create a binary stream is with open() with 'b' in the mode string:
f = open("myfile.jpg", "rb")

In-memory binary streams are also available as BytesIO objects:

f = i0.BytesIO(b"some initial binary data: \x00\x01")
The binary stream API is described in detail in the docs of BufferedlOBase.

Other library modules may provide additional ways to create text or binary streams. See
socket.socket.makefile() for example.

11.23 Raw 1/O

Raw 1/0O (also called unbuffered I/O) is generally used as a low-level building-block for bi-
nary and text streams; it is rarely useful to directly manipulate a raw stream from user code.
Nevertheless, you can create a raw stream by opening a file in binary mode with buffering

f = open("myfile.jpg", "rb", buffering=0)

The raw stream API is described in detail in the docs of RawlOBase.

11.24 Performance
This section discusses the performance of the provided concrete I/O implementations.

11.24.1 Binary I/O

By reading and writing only large chunks of data even when the user asks for a single byte,
buffered I/O hides any inefficiency in calling and executing the operating system’s

Ian D Chivers Chapter 11

184 IO

unbuffered I/O routines. The gain depends on the OS and the kind of I/O which is per-
formed. For example, on some modern OSes such as Linux, unbuffered disk I/O can be as
fast as buffered I/O. The bottom line, however, is that buffered I/O offers predictable per-
formance regardless of the platform and the backing device. Therefore, it is almost always
preferable to use buffered I/O rather than unbuffered I/O for binary data.

11.24.2 Text I/O

Text 1/O over a binary storage (such as a file) is significantly slower than binary I/O over
the same storage, because it requires conversions between unicode and binary data using a
character codec. This can become noticeable handling huge amounts of text data like large
log files. Also, TextlIOWrapper.tell() and TextlOWrapper.seek() are both quite slow due to
the reconstruction algorithm used.

StringlO, however, is a native in-memory unicode container and will exhibit similar speed
to ByteslO.
11.24.3 Multi-threading

FilelO objects are thread-safe to the extent that the operating system calls (such as read(2)
under Unix) they wrap are thread-safe too.

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and
BufferedRWPair) protect their internal structures using a lock; it is therefore safe to call
them from multiple threads at once.

TextlOWrapper objects are not thread-safe.

11.24.4 Reentrancy

Binary buffered objects (instances of BufferedReader, BufferedWriter, BufferedRandom and
BufferedRWPair) are not reentrant. While reentrant calls will not happen in normal situa-
tions, they can arise from doing I/O in a signal handler. If a thread tries to re-enter a buf-
fered object which it is already accessing, a RuntimeError is raised. Note this doesn’t pro-
hibit a different thread from entering the buffered object.

The above implicitly extends to text files, since the open() function will wrap a buffered ob-
ject inside a TextlOWrapper. This includes standard streams and therefore affects the
built-in function print() as well.

11.25 Problems

1. Try running the examples in this chapter.

Chapter 11 Ian D Chivers

An Introduction to Algorithms and the Big O notation 185

“"Errors using inadequate data are much less than those using no data at all."

Charles Babbage

Aims

The aims of this chapter are to provide an introduction to algorithms and their behaviour. In
Computer Science this is normally done using the so called big O notation.

12 An Introduction to Algorithms and
the Big O notation

A method for dealing with approximations was introduced by Bachman in 1892 in his work
Analytische Zahlen Theorie. This is the big O notation.

The big O notation is used to classify algorithms by how they perform depending on the
size of the input data set they are working on. This typically means looking at both their
space and time behaviour.

A more detailed and mathematical coverage can be found in Knuth's Fundamental Algo-
rithms. Chapter one of this book looks at the basic concepts and mathematical preliminaries
required for analysing algorithms, and is around 120 pages. Well worth a read.

12.1 Basic background

The table below summarises some of the details regarding commonly occurring types of

problem.
Notation Name
o(1) constant
O(n) linear
O(log n) logarithmic
O(n log n) = O(log n!) linearithmic,
loglinear,
quasilinear
O(log log n) double logarithmic
O(n log"* n) n log-star n
O(n"2) quadratic
O(n"c) 0<c<l1 fractional power
O(n”c) c>1 polynomial
or algebraic
O(c¢”n) c>1 exponential
O(n!) factorial

Ian D Chivers Chapter 12

186 An Introduction to Algorithms and the Big O notation

12.1.1 Brief explanation

O(1)
O(log log n)
O(log n)

On*c)0<c<1
O(n)

O(n log"* n)
O(n log n)

O(n"2)

O(n*c)c>1

O(c™n) c>1

O(n!)

Determining if a number is even or odd; using a constant-size lookup
table

Finding an item using interpolation search in a sorted array of uni-
formly distributed values.

Finding an item in a sorted array with a binary search or a balanced
search tree as well as all operations in a Binomial heap.

Searching in a kd-tree
Finding an item in an unsorted list or a malformed tree (worst case)
or in an unsorted array;

Performing triangulation of a simple polygon using Seidel's algo-
rithm.

Performing a Fast Fourier transform; heapsort, quicksort (best and av-
erage case), or merge sort.

Multiplying two n-digit numbers by a simple algorithm; bubble sort
(worst case or naive implementation), Shell sort, quicksort (worst
case), selection sort or insertion sort.

Tree-adjoining grammar parsing; maximum matching for bipartite
graphs.

Finding the (exact) solution to the travelling salesman problem using
dynamic programming; determining if two logical statements are
equivalent using brute-force search.

Solving the travelling salesman problem via brute-force search; gen-
erating all unrestricted permutations of a poset; finding the determi-
nant with expansion by minors.

The following table illustrates the behaviour of 4 of the above for increasing n.

n
1

10

100

1,000

10,000
100,000
1,000,000
10,000,000
100,000,000
1,000,000,000

Chapter 12

o(l) O(n) O(n*n) O(log n) O(n log n)
1 1 1.00E+00 0 0.00E+00
1 10 1.00E+02 2.3 2.30E+01
1 100 1.00E+04 4.61 4.61E+02
1 1,000 1.00E+06 6.91 6.91E+03
1 10,000 1.00E+08 9.21 9.21E+04
1 100,000 1.00E+10 11.51 1.15E+06
1 1,000,000 1.00E+12 13.82 1.38E+07
1 10,000,000 1.00E+14 16.12 1.61E+08
1 100,000,000 1.00E+16 18.42 1.84E+09
1 1,000,000,000 1.00E+18 20.72 2.07E+10

Ian D Chivers

An Introduction to Algorithms and the Big O notation 187

12.2 Quicksort and insertion sort comparison
Algorithm Data Time Worst Case

Structure Complexity Auxiliary

Space Complexity

Best Average Worst Worst
Quicksort Array O(n log(n)) O(n log(n)) O(n"2) O(n)
Insertion Sort Array O(n) O(n"2) O(n"2) o(l)

12.3 Basic array and linked list performance

The following table summarises this information.

Data Time Space

Structure Complexity Complexity
Average Worst Worst
Index Search Insert Delete Index Search Insert Delete

Basic) O(n) o(l) O(n) O(n)

Array))))

Dy-

namic o(1) Omn) O(m) Om) O() O(m) Om) O(m) On)

Array

Singly

Linked O(n) O(n) O(l) O(1) O(m) Om O) O(d) O(n)

List

12.4 Bibliography

The earliest books that we have used in this area are those by Donald Knuth, and details are
given below in chronological order.

e Volume 1, Fundamental Algorithms, first edition, 1968, xxi+634pp,
ISBN 0-201-03801-3.

e Volume 2, Seminumerical Algorithms, first edition, 1969, xi+624pp,
ISBN 0-201-03802-1.

e Volume 3, Sorting and Searching, first edition, 1973,
xi+723pp+centerfold, ISBN 0-201-03803-X

e Volume 1, second edition, 1973, xxi+634pp, ISBN 0-201-03809-9.

Ian D Chivers Chapter 12

188 An Introduction to Algorithms and the Big O notation

e Volume 2, second edition, 1981, xiii+ 688pp, ISBN 0-201-03822-6.

Knuth uses the Mix assembly language (an artificial language) and this limits the accessibil-
ity of the books.

However within the Computer Science community they are generally regarded as the first
and most comprehensive treatment of its subject. itemize

For something more accessible, Sedgewick has written several programming language
versions of a book on algorithms. He was a student of Knuth's. The earliest used Pascal,
and later editions have used C, C++ and Modula 2 and Modula 3.

e Sedgewick, Robert (1992). Algorithms in C++, Addison-Wesley.
ISBN 0-201-51059-6.

e Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley.
ISBN 0-201-53351-0. itemize

12.5 Problems

There are no problems in this chapter.

Chapter 12 Ian D Chivers

Sequence types, Iterators and Lists 189

The good teacher is a guide who helps others dispense with his services.
R. S. Peters, Ethics and Education.

13 Sequence types, lterators and Lists

The information in this chapter is taken from section 4 of
https://docs.python.org/3/1library/index.html

which is on the Python built in data types, as listed below
e Truth Value Testing
e Boolean Operations — and, or, not
e Comparisons
e Numeric Types — int, float, complex
e [terator Types
e Sequence Types — list, tuple, range
e Text Sequence Type — str
e Binary Sequence Types — bytes, bytearray, memoryview
e Set Types — set, frozenset
e Mapping Types — dict
e Context Manager Types
e Other Built-in Types
e Special Attributes
and we will concentrate on
e [terator Types
e Sequence Types — list, tuple, range
e Set Types — set, frozenset
e Mapping Types — dict

13.1 Iterator types

Python supports a concept of iteration over containers. This is implemented using two dis-
tinct methods; these are used to allow user-defined classes to support iteration. Sequences,
described below in more detail, always support the iteration methods.

Python’s generators provide a convenient way to implement the iterator protocol. If a con-
tainer object’s _iter () method is implemented as a generator, it will automatically return
an iterator object (technically, a generator object) supplying the iter () and next ()
methods. More information about generators can be found in the documentation for the
yield expression.

13.2 Example 1 - Simple iterator usage
Here is a simple iterator example.
1=1[1,2,3,4]

for i1 in 1:

Ian D Chivers Chapter 13

190 Sequence types, Iterators and Lists

print (1)
for line in open("cl301.txt"):
print (line)

Here is the output

SN

This 1is a file
with some text 1in it

over three lines

In this example we iterate over a list and the lines in a file.

13.3 Sequence types

There are three basic sequence types: lists, tuples, and range objects.

13.3.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable
and immutable. The collections.abc.Sequence ABC is provided to make it easier to cor-
rectly implement these operations on custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and t are
sequences of the same type, n, 1, j and k are integers and x is an arbitrary object that meets
any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The +

(concatenation) and * (repetition) operations have the same priority as the corresponding
numeric operations.

Operation Result (Notes)

X ins True if an item of s is equal to x, else False
X not in s False if an item of s is equal to x, else True
s+t the concatenation of s and t

s*norn*s equivalent to adding s to itself n times

s[i] ith item of s, origin 0

s[i:j] slice of s from i to j

s[i:j:k] slice of s from i to j with step k

len(s) length of s

min(s) smallest item of s

Chapter 13 Ian D Chivers

Sequence types, Iterators and Lists 191

max(s) largest item of s

s.ndex(x[, i[, j1]) index of the first occurrence of x in s (at or after index i and before
index j)

s.count(x) total number of occurrences of x in s

See the full reference for the meaning of the notes.

13.3.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also im-
plemented by mutable sequence types is support for the hash() built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys
and stored in set and frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in
TypeError.

13.3.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collec-
tions.abc.MutableSequence ABC is provided to make it easier to correctly implement these
operations on custom sequence types.

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an
arbitrary object that meets any type and value restrictions imposed by s (for example,
bytearray only accepts integers that meet the value restriction 0 <= x <= 255).

Operation Result (Notes)

s[i] = x item 1 of s is replaced by x

s[izj] =t slice of s from i to j is replaced by the contents of the iterable t

del s[i:j] same as s[i;j] =[]

s[izjik] =t the elements of s[i:j:k] are replaced by those of t

del s[i:j:k] removes the elements of s[i:j:k] from the list

s.append(x) appends x to the end of the sequence (same as s[len(s):len(s)] = [x])
s.clear() removes all items from s (same as del s[:])

s.copy() creates a shallow copy of s (same as s[:])

s.extend(t) or s +=t extends s with the contents of t
(for the most part the same as s[len(s):len(s)] =t)

s *=n updates s with its contents repeated n times

s.insert(i, X) inserts x into s at the index given by 1 (same as s[i:i] = [X])
s.pop([i]) retrieves the item at i and also removes it from s
s.remove(X) remove the first item from s where s[i] == x

Ian D Chivers Chapter 13

192 Sequence types, Iterators and Lists

s.reverse() reverses the items of s in place
See the full text for the meaning of the notes.
13.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items
(where the precise degree of similarity will vary by application).

class list([iterable])

Lists may be constructed in several ways:
e Using a pair of square brackets to denote the empty list: []
e Using square brackets, separating items with commas: [a], [a, b, c]
e Using a list comprehension: [x for x in iterable]

e Using the type constructor: list() or list(iterable)

The constructor builds a list whose items are the same and in the same order as iterable‘s
items. iterable may be either a sequence, a container that supports iteration, or an iterator
object. If iterable is already a list, a copy is made and returned, similar to iterable[:]. For
example, list('abc') returns ['a’, 'b', 'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no argument is
given, the constructor creates a new empty list, [].

Many other operations also produce lists, including the sorted() built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the
following additional method:

sort (*, key=None, reverse=None)

This method sorts the list in place, using only < comparisons between items. Exceptions are
not suppressed - if any comparison operations fail, the entire sort operation will fail (and
the list will likely be left in a partially modified state).

sort() accepts two arguments that can only be passed by keyword (keyword-only argu-
ments):

key specifies a function of one argument that is used to extract a comparison key from each
list element (for example, key=str.lower). The key corresponding to each item in the list is
calculated once and then used for the entire sorting process. The default value of None
means that list items are sorted directly without calculating a separate key value.

The functools.cmp to key() utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each com-
parison were reversed.

This method modifies the sequence in place for economy of space when sorting a large se-
quence. To remind users that it operates by side effect, it does not return the sorted se-
quence (use sorted() to explicitly request a new sorted list instance).

The sort() method is guaranteed to be stable. A sort is stable if it guarantees not to change
the relative order of elements that compare equal — this is helpful for sorting in multiple
passes (for example, sort by department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mu-
tate, or even inspect, the list is undefined. The C implementation of Python makes the list
appear empty for the duration, and raises ValueError if it can detect that the list has been
mutated during a sort.

Chapter 13 Ian D Chivers

Sequence types, Iterators and Lists 193

13.5 Example 2 - list type initialisation and simple for in statement
Here is the program.

months = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December"]
days = ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"]
for m in months:

print (m,end=" ")
print ()
for d in days:

print (d,end=" ")
print ()

Here is the output

January February March April May June July August September
October November December
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

13.6 Example 3 - list type and various sequence methods
Here is the program.

list 1 = range(10)
print (" List 1 is",end=": ")
for 1 in 1list 1:
print (i, end=" ")
print ()
nl=len(list 1)
print (" Length of list is ",nl)
list 2 = range(5)
n2=len(list 2)

list 3 = []
list 3] 0 : (nl-1)] = 1list 1
list 3[nl : (nl+n2-1)] = list 2

print (" List 2 is",end=": ")
for 1 in list 2:
print (i,end=" ")
print ()
print (" Length of list is ",len(list 2))
print (" List 3 is",end=": ")
for 1 in list 3:
print (i,end=" ")
print ()
print (" Length of list is ",len(list 3))
list 3.sort()
print (" Sorted list is: ",end=" ")
for 1 in list 3:
print (i,end=" ")
print ()
list 3.reverse()

Ian D Chivers Chapter 13

194 Sequence types, Iterators
print (" Reverse list is: ",end=" ")
for i in list 3:
print (i,end=" ")
print ()
list 3.insert (5, 99)
list 3.insert(6,999)
print (" List after insert: ",end=" ")

for i in list 3:
print (i, end="
print ()

")

Here is the output.

and Lists

List 1 is: 0 1 2 3 4 5 6 7 8 9

Length of 1list is 10

List 2 is: 0 1 2 3 4

Length of 1list is 5

List 3 is: 01 2 345 6 7 8 9 01 2 3 4

Length of 1list is 15

Sorted list is: 0011223344546 72829

Reverse 1list is: 987 654433221100

List after insert: 9 8 7 6 5 99 999 4 4 3 3 2 2 1100

This example shows the use of
e list construction using ranges

e list construction using an empty list

e iterating over a list

the len method

list assignment

list sort method

e list reverse method

e list insert method

The documentation has details of the complete list of methods available.

13.7 Example 4 - list assignment versus copy() method

Consider the following example.

list 1 = [1,2,3,4,5]

print (" List 1 is",end=":

for 1 in 1list 1:
print (i, end="

")

print ()

nl=len(list 1)

print (" Length of list is ",nl)
list 2 = 1list 1

print (" List 2 is",end=": ")

for 1 in list 2:
print (i, end="
print ()

")

Chapter 13 Ian D Chivers

Sequence types, Iterators and Lists 195

list 2[3]=99
print (" List 1 is",end=": ")
for i in list 1:

print (i,end=" ")

print ()
list 3 = list 1l.copy/()
print (" List 3 is",end=": ")

for i in list 3:
print (i,end=" ")
print ()
list 3[1]=999
print (" List 3 is",end=": ")
for i in list 3:
print (i,end=" ")
print ()
print (" List 1 is",end=": ")
for i in list 1:
print (i,end=" ")
print ()

Here is the output.
List 1 is: 1 2 3 4 5
Length of 1list is 5

List 2 is: 1 2 3 4 5
List 1 is: 1 2 3 99 5
List 3 is: 1 2 3 99 5
List 3 is: 1 999 3 99 5
List 1 is: 1 2 3 99 5

Assignment does a shallow copy.

13.8 List comprehensions

List comprehensions provide a concise way to create lists. Common applications are to
make new lists where each element is the result of some operations applied to each member
of another sequence or iterable, or to create a subsequence of those elements that satisfy a
certain condition.

13.9 Example 5 - simple list comprehension
Here is the source code.

def main () :

squares = []

for x in range (10):
squares.append (x**2)

print (squares)

if (_ _name == " main_ "):
main ()

Here is the output.
(6, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Ian D Chivers Chapter 13

196 Sequence types, Iterators and Lists

13.10 Example 6 - more list comprehensions
Here is the source.

def main () :

vec = [-4, -2, 0, 2, 4]
create a new list with the wvalues doubled
print ([x*2 for x 1in vec])

filter the list to exclude negative numbers
print ([x for x in wvec if x >= 0])

apply a function to all the elements
print ([abs(x) for x in vec])

call a method on each element
freshfruit = [' banana', ' loganberry ', 'passion fruit

print ([weapon.strip() for weapon in freshfruit])

create a list of 2-tuples like (number, square)
print ([(x, x**2) for x in range(6)])

flatten a list using a listcomp with two 'for'
vec = [[11213]1 [415/6]r [71819]]
print ([num for elem in vec for num in elem])

if (_name == " main "):
main ()

Here is the output.

_81 _41 Or 4/ 8]

2, 4]

4 2! OI 2! 4]

banana', 'loganberry', 'passion fruit']

(0, 0), (1, 1), (2, 4), (3, 9), (4, 1le), (5, 25)]
1! 2! 3! 4! 5! 6! 7! 8! 9]

13.11 Example 7 - more list comprehensions
Here is the source

from math import pi

def main () :

print ([str(round(pi, i)) for 1 in range(l, 6)])
if (_name == " main "):
main ()

Here is the output.

Chapter 13 Ian D Chivers

Sequence types, Iterators and Lists 197

('s.1', '3.14', '3.142', '3.1416', '3.14159']

13.12 Example 8 - even more list comprehensions
Here is the source

def main () :

matrix = |
(1, 2, 3, 471,
[5, 6, 7, 8],
(9, 10, 11, 127,
]

print ([[row[i] for row in matrix] for i in range(4)])
which 1is equivalent to

transposed = []
for i in range(4):

transposed.append([row[i] for row in matrix])
print (transposed)

if (__name == " main_ "):
main ()

Here is the output.

(1, s, 91, 12, e, 101, (3, 7, 111, [4, 8, 12]]
(1, s, 91, 12, e, 101, (3, 7, 111, [4, 8, 12]]

13.13 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data
(such as the 2-tuples produced by the enumerate() built-in). Tuples are also used for cases
where an immutable sequence of homogeneous data is needed (such as allowing storage in
a set or dict instance).

class tuple([iterable])
Tuples may be constructed in a number of ways:

e Using a pair of parentheses to denote the empty tuple: ()

e Using a trailing comma for a singleton tuple: a, or (a,)

e Separating items with commas: a, b, ¢ or (a, b, ¢)

e Using the tuple() built-in: tuple() or tuple(iterable)
The constructor builds a tuple whose items are the same and in the same order as iterable‘s
items. iterable may be either a sequence, a container that supports iteration, or an iterator
object. If iterable is already a tuple, it is returned unchanged. For example, tuple('abc') re-
turns (‘a', 'b', 'c') and tuple([1, 2, 3]) returns (1, 2, 3). If no argument is given, the construc-
tor creates a new empty tuple, ().
Note that it is actually the comma which makes a tuple, not the parentheses. The parenthe-
ses are optional, except in the empty tuple case, or when they are needed to avoid syntactic

Ian D Chivers Chapter 13

198 Sequence types, Iterators and Lists

ambiguity. For example, f(a, b, c) is a function call with three arguments, while f((a, b, c))
is a function call with a 3-tuple as the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,
collections.namedtuple() may be a more appropriate choice than a simple tuple object.

13.14 Example 9 - simple tuple usage

Here is the source code.

def main() :
tuple array = []

tl = ("ian","02077333896")
t2 = ("joan","02078482671")
t3 = 'ian', 'david', 'chivers'

tuple array.append(tl)
tuple array.append(t2)
tuple array.append (t3)

(key,value) = tuple arrayl0]

for 1 in range(len(tuple array)) :
print (tuple array[i])

print (key)
print (value)

for s in t3:
print (s)

for i in range(len(t3)):
print (t3[1])

if (__name == " main_ "):
main ()

Here is the output.

("ian', '02077333896")
("joan', '02078482671")
('ian', 'david', 'chivers')
ian

02077333896

ian

david

chivers

ian

david

chivers

Chapter 13 Ian D Chivers

Sequence types, Iterators and Lists 199

13.15 Ranges

The range type represents an immutable sequence of numbers and is commonly used for
looping a specific number of times in for loops.

class range(stop)class range(start, stop[, stepl)

The arguments to the range constructor must be integers (either built-in int or any object
that implements the _ index special method). If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r[i] = start +
step*1 where 1 >= 0 and 1[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start
+ step™*i, but the constraints are 1 >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do support
negative indices, but these are interpreted as indexing from the end of the sequence deter-
mined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features
(such as len()) may raise OverflowError.

13.16 Example 10 - simple range usage
Here is the source code.

def main () :

print (list (range (10)))
print (list (range(l, 11)))
print (list (range (0, 30, 5)))
print (list (range (0, 10, 3)))
print (list (range (0, -10, -1)))
print (list (range(0)))
print (list (range(l, 0)))

if (_name == " main "):
main ()

Here is the output.
O/ 1/ 2/ 3/ 4/ 5/ 6’ 7/ 8/ 9]

4 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10]
, 5, 10, 15, 20, 25]
4 3’ 6’ 9]

[

[1
[0
[0
(0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
[]
[]

13.17 Problems

1. Run the examples in this chapter.

Ian D Chivers Chapter 13

200 Set types

The good teacher is a guide who helps others dispense with his services.
R. S. Peters, Ethics and Education.

14 Set types

14.1 Set Types

A set object is an unordered collection of distinct hashable objects. Common uses include
membership testing, removing duplicates from a sequence, and computing mathematical op-
erations such as intersection, union, difference, and symmetric difference. (For other con-
tainers see the built-in dict, list, and tuple classes, and the collections module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered
collection, sets do not record element position or order of insertion. Accordingly, sets do
not support indexing, slicing, or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the
contents can be changed using methods like add() and remove(). Since it is mutable, it has
no hash value and cannot be used as either a dictionary key or as an element of another set.
The frozenset type is immutable and hashable — its contents cannot be altered after it is
created; it can therefore be used as a dictionary key or as an element of another set.
Non-empty sets (not frozensets) can be created by placing a comma-separated list of ele-
ments within braces, for example: {'jack’, 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set([iterable])

class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements
of a set must be hashable. To represent sets of sets, the inner sets must be frozenset objects.
If iterable is not specified, a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s) Return the cardinality of set s.

Xins Test x for membership in s.

X not in s Test x for non-membership in s.

isdisjoint(other) Return True if the set has no elements in common with

issubset(other)set <= other

set < other

issuperset(other)set >= other

set > other

union(other, ...)
set | other | ...

intersection(other, ...)
set & other & ...

Chapter 14

other. Sets are disjoint if and only if their intersection
is the empty set.

Test whether every element in the set is in other.

Test whether the set is a proper subset of other, that is,
set <= other and set != other.

Test whether every element in other is in the set.

Test whether the set is a proper superset of other, that
is, set >= other and set != other.

Return a new set with elements from the set and all
others.

Return a new set with elements common to the set and
all others.

Ian D Chivers

Set types 201

difference(other, ...) Return a new set with elements in the set that are not
set - other - ... in the others.

symmetric_difference(other) Return a new set with elements in either the set or
set ” other other but not both.

copy() Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and symmetric_dif-
ference(), issubset(), and issuperset() methods will accept any iterable as an argument. In
contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set('abc') & 'cbs' in favor of the more readable set('abc').inter-
section('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if ev-
ery element of each set is contained in the other (each is a subset of the other). A set is less
than another set if and only if the first set is a proper subset of the second set (is a subset,
but is not equal). A set is greater than another set if and only if the first set is a proper
superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For exam-
ple, set('abc') == frozenset(‘abc') returns True and so does set(‘abc') in set([frozenset('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For ex-
ample, any two nonempty disjoint sets are not equal and are not subsets of each other, so all
of the following return False: a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the list.sort()
method is undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand.
For example: frozenset('ab') | set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable in-
stances of frozenset:

update(other, ...) Update the set, adding elements from all others.

set |= other | ...

intersection_update(other, ...) Update the set, keeping only elements found in it and

set &= other & ... all others.

difference update(other, ...) Update the set, removing elements found in others.

set -= other | ...

symmetric_difference update(other) Update the set, keeping only elements found in either

set = other set, but not in both.

add(elem) Add element elem to the set.

remove(elem) Remove element elem from the set. Raises KeyError if
elem is not contained in the set.

discard(elem) Remove element elem from the set if it is present.

pop() Remove and return an arbitrary element from the set.

Raises KeyError if the set is empty.
clear() Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(), difference update(),
and symmetric_difference update() methods will accept any iterable as an argument.

Ian D Chivers Chapter 14

202 Set types

Note, the elem argument to the contains_ (), remove(), and discard() methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated
during the search and then restored. During the search, the elem set should not be read or
mutated since it does not have a meaningful value.

14.2 Example 1 - simple set usage
Here is the source

def main () :

basket = {'apple', 'orange', 'apple', 'pear', 'orange',
'banana'}
print (basket) # show that dupli-

cates have been removed

print ('orange' in basket) # fast member-
ship testing

print ('crabgrass' in basket)

Demonstrate set operations on unique letters from two
words

a = set('abracadabra')
b set('alacazam')

print (a) # unique
letters in a

print(a - D) # letters
in a but not in b

print(a | D) # letters
in either a or b

print(a & D) # letters
in both a and b

print(a ~ D) # letters
in a or b but not both

a = {x for x in 'abracadabra' if x not in 'abc'}
print (a)

if (_ _name == " main_ "):
main ()

Here is the output.

{'apple', 'orange', 'pear', 'banana'}
True

Chapter 14 Ian D Chivers

Set types

{'c', 'd', 'p', 'a', 'r'}
{'d', 'b', 'r'}

{'m', 'd', 'r', 'a', 'l', 'b', 'Z', 'c'}
(ra', 'c')

{'m', 'd', 'r', 'l', 'b', 'z'}

(ra', 'r')

14.

3 Example 2 - simple dictionary

203

In this example we look at creating a dictionary of words for use as a spelling checker.
Here is the source code.

import time

def main () :

if

start time=time.time ()
print (" ** Start time xW oend=" ")
print (start time)
data file="words"
nwords=173528
dictionary = set ()
f=open(data_ file)
for i in range (0, nwords) :
line=f.readline ()
word=line.rstrip('\n"'")
dictionary.add (word)
tl=time.time ()
initialisation time=tl-start time
print (" ** Dictionary read took **",end=" ")
print (" {0:12.6f}".format(initialisation time))

print (" Dictionary length = ",end=" ")
print (len(dictionary))

my word = input(" Type in a word ?")
print (" Looking for ",end=" ")

print (my word)
tl=time.time ()
if (my word in dictionary):
print (" ",end=" ")
print (my word,end=" ")
print (" in dictionary")
t2=time.time ()
find time=t2-tl
print (" **Set word look up took **",end=" ")
print (" {0:12.6f}".format(find time))
(_name == " main "):
main ()

Here is the output from a sample run.

Ian D Chivers

Chapter 14

204 Set types

c:\document\python\examples>python set 02.py

** Start time ** 1453652432.7970338
** Dictionary read took ** 0.187796
Dictionary length = 173528

Type in a word ?banana

Looking for Dbanana

banana 1in dictionary

**Set word look up took ** 0.000000

14.4 Problems

1. Run these examples.
What timing did you get for the dictionary example?

Chapter 14 Ian D Chivers

Mapping types 205

The good teacher is a guide who helps others dispense with his services.
R. S. Peters, Ethics and Education.

15 Mapping types

15.1 Mapping types
A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects.

There is currently only one standard mapping type, the dictionary. (For other containers see
the built-in list, set, and tuple classes, and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values
containing lists, dictionaries or other mutable types (that are compared by value rather than
by object identity) may not be used as keys. Numeric types used for keys obey the normal
rules for numeric comparison: if two numbers compare equal (such as 1 and 1.0) then they
can be used interchangeably to index the same dictionary entry. (Note however, that since
computers store floating-point numbers as approximations it is usually unwise to use them
as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within
braces, for example: {'jack': 4098, 'sjoerd': 4127} or {4098: "jack', 4127: 'sjoerd'}, or by the
dict constructor.

15.2 Example 1 - simple dict usage

Here is the source code.

def main() :

a = dict(one=1, two=2, three=3)
b = {'one': 1, 'two': 2, 'three': 3}
c = dict(zip(['one', 'two', 'three'], [1, 2, 31))
d = dict([('"two', 2), ('one', 1), ('three', 3)1)
e = dict({'three': 3, 'one': 1, 'two': 2})
print(a == b == ¢ == d == ¢e)

if (name == " main "):
main ()

Here is the output.
True

15.3 Example 2 - dict view usage
Here is the source code

def main () :

dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam':
500}

keys = dishes.keys|()

values = dishes.values|()

Ian D Chivers Chapter 15

206 Mapping types

iteration

n =0

for val in wvalues:
n += val

print (n)

keys and values are iterated over in the same order
list (keys)
list (values)

view objects are dynamic and reflect dict changes
del dishes['eggs']

del dishes|['sausage']

list (keys)

set operations
print (keys & {'eggs', 'bacon', 'salad'})
print (keys © {'sausage', 'juice'})

if (__name == " main_ "):
main ()

Here is the output.

504
{'bacon'}
{'"bacon', 'spam', 'Jjuice', 'sausage'}

15.4 Problems

1. Run the examples.

Chapter 15 Ian D Chivers

Operator overloading 207

16 Operator overloading

16.1 Introductio

n

Operator overloading is already implemented for a variety of the built-in classes or types in
Python. The following table has a list of Pythons operator overloading methods.

Method Definition
__add_ (self)y)

__contains__(self)y)

__eq__(selfy)

__ge (selfy)

__getitem__ (self)y)
_ gt (selfly)

__hash__(self)
__int__ (self)
__iter_ (self)
_le (selt)y)

__len_ (self)
1t (selfy)
__mod__ (self)y)

_ mul_ (self)y)
__ne_ (selfy)

__neg__ (self)
__repr__(self)

__setitem__ (self1,y)
__str_ (self)

__sub_ (self)y)

class position:

def init
self.x=x

Operator
Xty

y in X

X==y

X>=y

x[y]
X>y

hash(x)
nt(x)
for vin x

X <=y
len(x)
X<y
X%y

x *y

x!=y

repr(x)

x[i] =y
str(x)

X-Y

Description

The addition of two objects. The type of x determines
which add operator is called.
When x is a collection you can test to see if y is in it.

Returns True or False depending on the values of x
and y.

Returns True or False depending on the values of x
and y.

Returns the item at the yth position in x.

Returns True or False depending on the values of x
and y.

Returns an integral value for x.

Returns an integer representation of x.

Returns an iterator object for the sequence x.

Returns True or False depending on the values of x
and y.

Returns the size of x where x has some length attrib-
ute.

Returns True or False depending on the values of x
and y.

Returns the value of x modulo y. This is the remainder
of x/y.

Returns the product of x and y.

Returns True or False depending on the values of x
and y.

Returns the unary negation of x.

Returns a string version of x suitable to be evaluated
by the eval function.

Sets the item at the ith position in x to y.

Return a string representation of x suitable for
user-level interaction.
The difference of two objects.

Python Operator Magic Methods
16.2 Example 1 - simple operator overloading

Here is a simple example illustrating operator overloading in Python.

(self,x,y):

Ian D Chivers Chapter 16

208

self.y=y

def X (self):

return (self.x)

def Y (self):

return (self.vy)

def

tion 2.y)

def main () :

pl=position (10, 20)
p2=position (100,200)

p3=position (1000,2000)

Operator overloading

print (pl.X(),pl.Y())
print (p2.X(),p2.Y())
print (p3.X(),p3.Y())

p3=pl+p2

print (p3.X(),p3.Y())

if name ==

main ()
Here is the output.

10 20

100 200
1000 2000
110 220

16.3 Problems

Al

main

L1
.

add_ (self,position 2):

return position(self.x + position 2.x ,

1. Add a subtract method to the above example.

Chapter 16

Ian D Chivers

self.y + posi-

Decimals, fractions, random numbers 209

‘When I use a word,” Humpty Dumpty said, in a rather scornful tone, ‘it means just what I
choose it to mean - neither more nor less’
‘The question is,” said Alice, ‘whether you can make words mean so many different things.’

Lewis Carroll, Through the Looking Glass and What Alice found there.

17 Decimals, fractions, random
numbers

17.1 Introduction
Python provides a number of additional mathematic modules. In this chapter we will have a

look at

decimal
fraction

random

The information is taken from:
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/1library/decimal .html#module-decimal

Python's built in floating point operations are based on C's double, which in turn is based
on the IEEE 64 bit floating point representation in most cases. This is suitable for a wide
range of science and engineering calculations.

Where more accuracy is required Python provides the decimal module.

17.2 The Decimal module

The decimal module provides support for fast correctly-rounded decimal floating point
arithmetic. It offers several advantages over the float datatype:

Decimal “is based on a floating-point model which was designed with people in
mind, and necessarily has a paramount guiding principle — computers must pro-
vide an arithmetic that works in the same way as the arithmetic that people learn
at school.” — excerpt from the decimal arithmetic specification.

Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and
2.2 do not have exact representations in binary floating point. End users typi-
cally would not expect 1.1 + 2.2 to display as 3.3000000000000003 as it does
with binary floating point.

The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 +
0.1 - 0.3 is exactly equal to zero. In binary floating point, the result is
5.5511151231257827e-017. While near to zero, the differences prevent reliable
equality testing and differences can accumulate. For this reason, decimal is pre-
ferred in accounting applications which have strict equality invariants.

The decimal module incorporates a notion of significant places so that 1.30 +
1.20 is 2.50. The trailing zero is kept to indicate significance. This is the cus-
tomary presentation for monetary applications. For multiplication, the “school-

Ian D Chivers Chapter 17

210 Decimals, fractions, random numbers

book™ approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2
gives 1.56 while 1.30 * 1.20 gives 1.5600.

e Unlike hardware based binary floating point, the decimal module has a user al-
terable precision (defaulting to 28 places) which can be as large as needed for a
given problem:

We have a look at a small number of decimal examples.

17.3 Example 1 - using getcontext()
This example just prints out the default context for decimal arithmetic.
Here is the source.

from decimal import *
print (getcontext ())

Here is the output.

Context (

prec=28,

rounding=ROUND HALF EVEN,

Fmin=-999999,

Fmax=999999,

capitals=1,

clamp=0,

flags=[],

traps=[InvalidOperation, DivisionByZero, Overflow])

The output has been split over several lines to make it easier to read.

17.4 Function availability

abs(x) Returns the absolute value of x.
add(x, y) Return the sum of x and y.
canonical(x) Returns the same Decimal object x.
compare(x, y) Compares x and y numerically.

compare_signal(x, y) Compares the values of the two operands numerically.

compare_total(x, y) Compares two operands using their abstract representation.
compare_total mag(x, y) Compares two operands using their abstract representation, ig-
noring sign.

copy_abs(x) Returns a copy of x with the sign set to 0.

copy_negate(x)
copy_sign(x, y)
divide(x, y)
divide int(x, y)
divmod(x, y)
exp(x)

fma(x, y, z)
is_canonical(x)
is_finite(x)

is_infinite(x)

Chapter 17

Returns a copy of x with the sign inverted.

Copies the sign from y to x.

Return x divided by y.

Return x divided by y, truncated to an integer.

Divides two numbers and returns the integer part of the result.
Returns e ** x.

Returns x multiplied by y, plus z.

Returns True if X is canonical; otherwise returns False.
Returns True if x is finite; otherwise returns False.

Returns True if x is infinite; otherwise returns False.

Ian D Chivers

is_nan(x)
i1s_normal(x)
is_gnan(x)
is_signed(x)
is_snan(x)
i1s_subnormal(x)
is_zero(X)

In(x)

log10(x)

logb(x)

logical and(x, y)

logical invert(x)
logical or(x, y)

logical xor(x, y)

max(X, y)
max_mag(X, y)
min(X, y)
min_mag(Xx, y)

minus(x)

multiply(x, y)
next minus(x)
next_plus(x)
next toward(x, y)
normalize(x)

number_class(x)

plus(x)

Decimals, fractions, random numbers 211

Returns True if x is a qNaN or sNaN; otherwise returns False.
Returns True if x 1s a normal number; otherwise returns False.
Returns True if x is a quiet NaN; otherwise returns False.
Returns True if x is negative; otherwise returns False.

Returns True if x is a signaling NaN; otherwise returns False.
Returns True if x is subnormal; otherwise returns False.
Returns True if x is a zero; otherwise returns False.

Returns the natural (base e) logarithm of x.

Returns the base 10 logarithm of x.

Returns the exponent of the magnitude of the operand’s MSD.

Applies the logical operation and between each operand’s dig-
its.

Invert all the digits in x.

Applies the logical operation or between each operand’s dig-
its.

Applies the logical operation xor between each operand’s dig-
its.

Compares two values numerically and returns the maximum.
Compares the values numerically with their sign ignored.
Compares two values numerically and returns the minimum.
Compares the values numerically with their sign ignored.

Minus corresponds to the unary prefix minus operator in Py-
thon.

Return the product of x and y.

Returns the largest representable number smaller than x.
Returns the smallest representable number larger than x.
Returns the number closest to x, in direction towards y.
Reduces x to its simplest form.

Returns an indication of the class of x.

Plus corresponds to the unary prefix plus operator in Python.
This operation applies the context precision and rounding, so
it is not an identity operation.

power(X, y, modulo=None) Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y must be integral. The result will
be inexact unless y is integral and the result is finite and can be expressed exactly in ‘preci-
sion’ digits. The rounding mode of the context is used. Results are always correctly-rounded

in the Python version.

With three arguments, compute (x**y) % modulo. For the three argument form, the follow-
ing restrictions on the arguments hold:

e all three arguments must be integral

e y must be nonnegative

e at least one of x or y must be nonzero

Ian D Chivers Chapter 17

212 Decimals, fractions, random numbers

e modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is equal to the value that would be
obtained by computing (x**y) % modulo with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of the exponents of x, y and
modulo. The result is always exact.

quantize(x, y) Returns a value equal to x (rounded), having the exponent of
y.

radix() Just returns 10, as this is Decimal, :)

remainder(x, y) Returns the remainder from integer division. The sign of the
result, if non-zero, is the same as that of the original dividend.

remainder_near(x, y) Returns x - y * n, where n is the integer nearest the exact
value of x / y (if the result is O then its sign will be the sign of
X).

rotate(x, y) Returns a rotated copy of x, y times.

same_quantum(X, y) Returns True if the two operands have the same exponent.

scaleb(x, y) Returns the first operand after adding the second value its exp.

shift(x, y) Returns a shifted copy of x, y times.

sqrt(x) Square root of a non-negative number to context precision.

subtract(x, y)Y Return the difference between x and y.

to_eng_string(x) Converts a number to a string, using scientific notation.

to_integral exact(x) Rounds to an integer.

to_sci_string(x) Converts a number to a string using scientific notation

17.5 Example 2 - values for the maths constants e and pi
Here is the source.

from decimal import *
import math

def pi():
"""Compute Pi to the current precision.

>>> print (pi())
3.141592653589793238462643383

mwmw

getcontext () .prec += 2 # extra digits for intermediate
steps

three = Decimal (3) # substitute "three=3.0" for
regular floats

lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24

while s != lasts:
lasts = s
n, na = n+na, na+8

d, da = d+da, da+32
t = (¢t * n) / d
s += t

Chapter 17 Ian D Chivers

Decimals, fractions, random numbers 213

getcontext () .prec -= 2
return +s # unary plus applies the new
precision

def main () :

print (pi())
print (Decimal (math.pi))

print ('3.14159265358979323846264338327950288419716939937510")
print (Decimal (1) .exp())
print (Decimal (math.e))

print ('2.71828182845904523536028747135266249775724709369995")

if (__name == " main_ "):
main ()

Here is the output.

.141592653589793238462643383
.141592653589793115997963468544185161590576171875
.14159265358979323846264338327950288419716939937510
.718281828459045235360287471
.718281828459045090795598298427648842334747314453125
.71828182845904523536028747135266249775724709369995

NN DN W W w

Care must be taken when using extended precision.

17.6 Example 3 - summation using float and decimal
Here is the source.

from decimal import *

def main() :
print (sum([Decimal ('0.1")]*10))
print(Decimal('1.0"))

print (sum([Decimal ('0.1")]*10) == Decimal ('1.0"))

print (sum([0.1]1*10))

print (1.0)

print (sum([0.1]*10) == 1.0)
if (__name == " main "):

main ()

Here is the output.

1.0

1.0

True
0.9999999999999999

Ian D Chivers Chapter 17

214 Decimals, fractions, random numbers

1.0
False

17.7 The Fraction module
The information in this section is taken from
http://docs.python.org/3/library/fractions.html

The fractions module provides support for rational number arithmetic. A Fraction instance
can be constructed from a pair of integers, from another rational number, or from a string.

e class fractions.Fraction(numerator=0, denominator=1)
e class fractions.Fraction(other fraction)

e class fractions.Fraction(float)

e class fractions.Fraction(decimal)

e class fractions.Fraction(string)

The first version requires that numerator and denominator are instances of numbers.Rational
and returns a new Fraction instance with value numerator/denominator. If denominator is 0,
it raises a ZeroDivisionError. The second version requires that other fraction is an instance
of numbers.Rational and returns a Fraction instance with the same value. The next two ver-
sions accept either a float or a decimal.Decimal instance, and return a Fraction instance
with exactly the same value. Note that due to the usual issues with binary floating-point
(see Floating Point Arithmetic: Issues and Limitations), the argument to Fraction(1.1) is not
exactly equal to 11/10, and so Fraction(1.1) does not return Fraction(11, 10) as one might
expect. (But see the documentation for the limit denominator() method below.) The last
version of the constructor expects a string or unicode instance. The usual form for this
instance is:

[sign] numerator ['/' denominator]

where the optional sign may be either ‘+’ or ‘- and numerator and denominator (if present)
are strings of decimal digits. In addition, any string that represents a finite value and is ac-
cepted by the float constructor is also accepted by the Fraction constructor. In either form
the input string may also have leading and/or trailing whitespace.

17.8 Example 4 - simple fraction usage
Here is the source code.

from fractions import Fraction
from decimal import Decimal

def main () :

fl = Fraction(le, -10)

f2 = Fraction(123)

£f3 = Fraction ()

f4 = Fraction('3/7")

f5 = Fraction(' -3/7 ")

f6 = Fraction('1.414213 \t\n')

£7 = Fraction('-.125")
f8 = Fraction('7e-6")
f9 = Fraction(2.25)
£f10 = Fraction(1l.1)

Chapter 17 Ian D Chivers

Decimals, fractions, random numbers 215

fl1l = Fraction(Decimal('1.1"))
print (" f1 = " , f1)
print (" f2 =" , £f2)
print (" £f3 = " , £3)
print (" f4 = " , f4)
print (" f5 = " , £5)
print (" f6 = " , £f6)
print (" f£7= " , £7)
print (" f8 = " , £8)
print (" £f9 = " , £f9)
print (" f10 = " , £f10)
print (" f11 = " , f11)

if (name == " main_ ")
main ()

Here is the output.

f1 = -8/5

f2 = 123

£3 = 0

f4 = 3/7

£f5 = -=-3/7

fo = 1414213/1000000
£f7= -1/8

£8 = 7/1000000

£f9 = 9/4

£f10 = 2476979795053773/2251799813685248
f11 = 11/10

17.9 The Random module

The information in this section is taken from.
https://docs.python.org/3/1library/random.html

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selec-
tion of a random element, a function to generate a random permutation of a list in-place,
and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal,
negative exponential, gamma, and beta distributions. For generating distributions of angles,
the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a ran-
dom float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as
the core generator. It produces 53-bit precision floats and has a period of 2**19937-1. The
underlying implementation in C is both fast and threadsafe. The Mersenne Twister is one of
the most extensively tested random number generators in existence. However, being com-
pletely deterministic, it is not suitable for all purposes, and is completely unsuitable for
cryptographic purposes.

Ian D Chivers Chapter 17

216 Decimals, fractions, random numbers

The functions supplied by this module are actually bound methods of a hidden instance of
the random.Random class. You can instantiate your own instances of Random to get genera-
tors that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your
own devising: in that case, override the random(), seed(), getstate(), and setstate() methods.
Optionally, a new generator can supply a getrandbits() method — this allows randrange() to
produce selections over an arbitrarily large range.

The random module also provides the SystemRandom class which uses the system function
os.urandom() to generate random numbers from sources provided by the operating system.

17.10 Example 5 - simple random usage
Here is the program.

import random

def main () :

rl = random.random/()
Random float x, 0.0 <= x < 1.0
r2 = random.uniform(l, 10)
Random float x, 1.0 <= x < 10.0
r3 = random.randrange (10)
Integer from 0 to 9
r4 = random.randrange (0, 101, 2)
Even integer from 0 to 100
r5 = random.choice ('abcdefghij"'")
Single random element
re = [1, 2, 3, 4, 5, 6, 7]

r7 = random.sample([1l, 2, 3, 4, 5], 3)
Three samples without replacement

print (" rl1 =" , rl)
print (" r2 =" , r2)
print (" r3 = " , r3)
print (" r4 = " , r4)
print (" r5 = " , rbH)
print (" r6 = " , ro6)
random.shuffle (r6)
print (" r6 = " , ro6)
print (" r7 =" , r7)
if (_ _name == " main "):

main ()

Here is the output.

rl = 0.9522312278705292
r2 = 1.8207726773335011
r3 = 3
rd = 30
r5 = h

Chapter 17 Ian D Chivers

Decimals, fractions, random numbers 217

r6 = [l, 2, 3/ 4/ 5/ 6/ 7]
ro = (4, 5, 3, 2, 6, 1, 7]
r7 = [3, 5[l]

17.11 Problems

1. Run the examples in this chapter.

Ian D Chivers Chapter 17

218 Databases and sqlite

18 Databases and sqlite

18.1 Introduction to database management systems
There are three main types of data

e tabular data
e text based data

e spatial data
and database management systems have been developed to handle each of them. The main
database management systems (dbms) to handle tabular data are relational systems. There is
a separate chapter on SQL and the Relational Model.
18.2 SQL based systems and Python
The following information is taken from
https://wiki.python.org/moin/SQL%20Server

18.2.1 Microsoft SQL Server
URL
http://www.microsoft.com/sqgl/default.mspx

licence commercial/proprietary software, although a free (gratis) edition "SQL
Server 2008 R2 Express" is available for platforms Windows 2000 and later

Pros

SQL Server is a robust and fully-featured database, and it performs very well. More-
over, | have not had any problems using this database with Python.

The SQL Server Express versions are free to download, use and can even be redis-
tributed with products.

Cons
Windows only.

SQL Server comes in various flavours. The latest free version has a 10GB database size
limit. It comes with the GUI tools and Reporting Services. The standard and other versions
include many extra features.

18.2.2 DB API 2.0 Drivers
adodbapi
URL
http://adodbapi.sourceforge.net/
SourceForge
http://sourceforge.net/projects/adodbapi
licenceLGPL platformsWindows only
pymssql
URL
http://pymssql.org
licenceLGPL platformsWindows and Unix
mssql
URL

Chapter 18 Ian D Chivers

Databases and sqlite 219

http://www.object-craft.com.au/projects/mssql/
licenceBSD platformsWindows
mxODBC
URL
http://www.egenix.com/

LicenseeGenix.com Commercial License PlatformsWindows, Unix, Mac OS X,
FreeBSD, Solaris, AIX, other platforms on request Python versions2.4 - 2.7

mxODBC requires an ODBC driver to talk to SQL Server. On Windows, you can
use the MS SQL Server Native Client ODBC driver for Windows, on the other plat-
forms, there are several commercial ODBC high quality drivers available, an
open-source http://www.freetds.org/ FreeTDS ODBC driver for Unix platforms and
the free MS SQL Server Native Client ODBC driver for Linux x64.

mxODBC comes with full support for stored procedures, multiple result sets,
Unicode, a common interface on all platforms and many other useful features.

pyodbc
URL
http://code.google.com/p/pyodbc

LicenseMIT PlatformsWindows, Linux, MacOS X, FreeBSD, Solaris, Any (source
provided) Python versions2.4 - 3.2

Actively maintained Open Source project.

Precompiled binaries are available for Windows. RedHat Enterprise Linux, Centos,
and Fedora have precompiled RPMs available in their Extras repositories.

Supports ANSI and Unicode data and SQL statements and includes an extensive set
of unit tests for SQL Server. pyODBC require ODBC driver to work correctly with
SQL Server. You may download latest SQL Server ODBC driver and use it freely.
Or you may choose Microsoft ODBC driver for that needs which is posted above in
mxODBC driver description.

pypyodbc (Pure Python)
URL
http://code.google.com/p/pypyodbce
LicenseMIT PlatformsWindows, Linux Python versions2.4 - 3.3
A Hello World script of pypyodbc database programing
Connect SQL Server in 3 steps with pypyodbc on Linux

Run SQLAlchemy on PyPy with pypyodbc driver PyPyODBC is a pure Python
script, it runs on CPython / IronPython / PyPy , Version 2.4 /2.5/2.6 /2.7 , Win /
Linux , 32 / 64 bit.

Almost totally same usage as pyodbc (can be seen as a re-implementation of
pyodbc in pure Python).

Simple - the whole module is implemented in a single python script with less than
3000 lines.

Built-in Access MDB file creation and compression functions on Windows.
ODBC

Ian D Chivers Chapter 18

220

Databases and sqlite

It is possible to connect to an SQL Server database using ODBC, either the
mxODBC driver or the one included with Win32all. However, this is not recom-
mended - adodbapi is a better solution, in part because it supports unicode.

Comment: This is actually not true at all: ODBC is the native API used for SQL
Server and does support Unicode all the way. In fact, ODBC is the preferred way of
accessing SQL Server if you care for performance. Microsoft has just released the
SQL Server Native Client which is an extended ODBC driver for SQL Server. ADO
is just a layer on top of the ODBC interface and a lot slower as a result. See e.g. MS
TechNet for a comparison of ODBC, OLE DB and ADO, or this cookbook entry.

Comment: Note about the comment above -- just because it should be pointed out,
mxODBC is not a free product from what I can see, and the 'cookbook entry' from
2005 referenced above indicates that it is.

We will look at a simple offering using SQLite/
18.3 SAQLite

Here is their site.

http://sglite.org/about.html

The following information is taken from that site.

SQLite is an in-process library that implements a self-contained, server less,
zero-configuration, transactional SQL database engine. The code for SQLite is in the
public domain and is thus free for use for any purpose, commercial or private.
SQLite is the most widely deployed database in the world with more applications
than we can count, including several high-profile projects.

SQLite is an embedded SQL database engine. Unlike most other SQL databases,
SQLite does not have a separate server process. SQLite reads and writes directly to
ordinary disk files. A complete SQL database with multiple tables, indices, triggers,
and views, is contained in a single disk file. The database file format is cross-plat-
form - you can freely copy a database between 32-bit and 64-bit systems or between
big-endian and little-endian architectures. These features make SQLite a popular
choice as an Application File Format. Think of SQLite not as a replacement for Ora-
cle but as a replacement for fopen()

SQLite is a compact library. With all features enabled, the library size can be less
than 500KiB, depending on the target platform and compiler optimization settings.
(64-bit code is larger. And some compiler optimizations such as aggressive function
inlining and loop unrolling can cause the object code to be much larger.) If optional
features are omitted, the size of the SQLite library can be reduced below 300KiB.
SQLite can also be made to run in minimal stack space (4KiB) and very little heap
(100KiB), making SQLite a popular database engine choice on memory constrained
gadgets such as cellphones, PDAs, and MP3 players. There is a tradeoff between
memory usage and speed. SQLite generally runs faster the more memory you give
it. Nevertheless, performance is usually quite good even in low-memory environ-
ments.

SQLite is very carefully tested prior to every release and has a reputation for being
very reliable. Most of the SQLite source code is devoted purely to testing and verifi-
cation. An automated test suite runs millions and millions of test cases involving

Chapter 18 Ian D Chivers

Databases and sqlite 221

hundreds of millions of individual SQL statements and achieves 100% branch test
coverage. SQLite responds gracefully to memory allocation failures and disk I/O er-
rors. Transactions are ACID even if interrupted by system crashes or power failures.
All of this is verified by the automated tests using special test harnesses which sim-
ulate system failures. Of course, even with all this testing, there are still bugs. But
unlike some similar projects (especially commercial competitors) SQLite is open
and honest about all bugs and provides bugs lists and minute-by-minute chronolo-
gies of bug reports and code changes.

The SQLite code base is supported by an international team of developers who work
on SQLite full-time. The developers continue to expand the capabilities of SQLite
and enhance its reliability and performance while maintaining backwards compati-
bility with the published interface spec, SQL syntax, and database file format. The
source code is absolutely free to anybody who wants it, but professional support is
also available.

We the developers hope that you find SQLite useful and we charge you to use it
well: to make good and beautiful products that are fast, reliable, and simple to use.
Seek forgiveness for yourself as you forgive others. And just as you have received
SQLite for free, so also freely give, paying the debt forward.

We will use SQLite in this chapter.
Some sample SQLite web sites

http://pythoncentral.io/introduction-to-sglite-in-python/
http://www.blog.pythonlibrary.org/2012/07/18/python-a-sim-
ple-step-by-step-sglite-tutorial/

18.4 On line documentation at W3 Schools

Visit

https://www.w3schools.com/sgl/default.asp

for a very good free reference.

18.5 SQL examples

In this example we will create a simple database taken from a UNEP database used in the
production of the following publication.

e United Nations Environment Programme, Environmental Data Report,
1989-1990, Basil Blackwell Ltd., ISBN 0-631-16987-3

Chapter 9 of the report is on natural disasters, and in this example we will look at some of
the earthquake and tsunami tables. We will look at the following steps

e database creation
e table creation

e Jloading tables

e querying tables

I had two secondments to UNEP where I worked with a wide range of environmental data
sets.

Ian D Chivers Chapter 18

222 Databases and sqlite

18.5.1 Example 1 - Database creation

Here is the short command file to create our database. Running these examples will create a
file called chapter09, which is our database.

import sglite3

db = sglite3.connect(':memory:")
db = sglite3.connect ('chapter09')
db.close ()

18.5.2 Example 2 - Table creation
We will create three tables. These are
e regions - a table with country and region classifications
e tsunami - a table with tsunami data
e carthgk - a table with earthquake data
The regions table contains the following columns
Regions WITH +
region +
countryn +
regions +
Country +
Countryf +
WHOreg +
WHOregs +
ECEmembr +
WRIreg +
WRIregs +
FAOQclass +
FAOreg +
FAOsortn
The above information was taken from the relational dbms that we used at UNEP.
The tsunami table contains the following columns
runup WITH +
region +
regions +
Country +
zregionn +
latitude +
longitud +
comments +
year +
Month +
Day +

Chapter 18 Ian D Chivers

height +
ahh +
amm +
ass +
tmm +
tss +
countryn +
aregion

Databases and sqlite

The earthgk table containes the following columns

earthgk WITH +
countryn +
Earthgkn +
year +
Yearn +
Month +
Day +
Time +
latitude +
longitud +
depth +
magnitud +
unknownl +
unknown2 +
deaths +
strength +
refs +

sregion

223

Here are details of the data types for each of the columns in the complete database.

1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
ahh

amm

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
INTEGER
INTEGER

= T i T N e S ey S R B et

Ian D Chivers

Chapter 18

224

area
aregion
ass
cause
cnotes
comment
comments
Country
Countryf
countryn
damage
Day
deathn
deaths
depth
Describe
Earthgkn
ECEmembr
f depth
FAOclass
FAOreg
FAOsortn
height
latitude
location
longitud
magnitud
Month
note
notes

r up

ref
refer
refhead
refs

reg _no
region
regions
site
source
sregion
strength
Tablenam
Time
tint
tmag

tmm
Today
total

Chapter 18

Databases and sqlite

TEXT 60
TEXT 40
INTEGER

TEXT 3
TEXT 20
TEXT 50
TEXT 40
TEXT 25
TEXT 100
INTEGER KEY
TEXT 1
INTEGER

TEXT 1
INTEGER

REAL
TEXT 1500
INTEGER
TEXT 1
TEXT 2
TEXT 27
TEXT 42
INTEGER

TEXT 1
REAL
TEXT 30
REAL
REAL

INTEGER

TEXT 1
TEXT 1400
REAL

TEXT 30
TEXT 1500
TEXT 1500
TEXT 24
INTEGER

TEXT 13
INTEGER

TEXT 25
TEXT 28
TEXT 60
TEXT 13
TEXT 8
INTEGER

REAL

REAL

INTEGER

DATE

INTEGER

Ian D Chivers

tregion
tss

unk
unknownl
unknown?
validity
WHOreg
WHOregs
WRIreg
WRIregs
year
Yearn
zregionn

TEXT
INTEGER
TEXT

INTEGER

TEXT

INTEGER

TEXT

INTEGER

TEXT

INTEGER
INTEGER

TEXT

INTEGER

Databases and sqlite

50

25

23

SQLite supports text, real and integer types.

Here is the command file used to create the tables.

import sglite3
db = sglite3.connect(':memory:")

db

cursor =

cursor.execute('"''

create table regions

(

region

text ,

countryn integer ,

regions

integer ,

country text ,
countryf text ,

whoreg

text ,

WHOregs integer ,
ECEmembr text ,

WRIreg
WRIregs

text ,
integer ,

FAOclass text ,

FAOreg

text ,

FAOsortn integer

)
lll)

db.commit ()

print ("

cursor.execute('"''

create table tsunami

(
region
regions

text ,
integer ,

country text ,
zregionn integer ,
latitude real ,

sglite3.connect ('chapter09")
Get a cursor object
db.cursor ()

Regions table created")

Ian D Chivers

225

Chapter 18

226 Databases and sqlite

longitud real ,
comments text ,

year integer ,
Month year ,

Day integer ,
height text ,

ahh integer ,
amm integer ,
ass integer ,
tmm integer ,
tss integer ,

countryn integer ,
aregion text

)

't

db.commit ()

print (" Tsunami table created")
cursor.execute('"'
create table earthgk
(

countryn integer ,
FEarthgkn integer ,

year integer ,
Yearn text ,

Month integer ,
Day integer ,
Time integer ,

latitude real ,
longitud real ,
depth real ,
magnitud real ,
unknownl integer ,
unknown?2 text ,

deaths integer ,
strength text ,
refs text ,

sregion text

)

't

db.commit ()

print (" Earthquake table created")
db.close()

18.5.3 Example 3 - loading the earthqk table

Here are extracts of the command files used to load the tables.
import sglite3

db = sglite3.connect(':memory:")

db = sglite3.connect ('chapter09')

Get a cursor object

cursor = db.cursor ()

Chapter 18 Ian D Chivers

Databases and sqlite 227

cursor.execute (''"'INSERT INTO earthgk VALUES
(199,1,-2000,"-",null,null,null,38.,58.2,null,null,null,"s",
null,null, "44","Western Turkenia"™)''")

cursor.execute ('''INSERT INTO earthgk VALUES
(101,2,-1566,"-",null,null,null,null,null,null,null,10,"-",
null,null,"611"™,"Jericho™)"'"'")

cursor.execute ('''INSERT INTO earthgk VALUES
(95,3,-600,"-",null,null,null,35.,45.,null,null,null,"-",null,
null,"57","Sinkarah: Temple of Taras")''")

cursor.execute (''"'INSERT INTO earthgk VALUES
(77,4,-225,"-",null,null,null,36.,28.5,null,null,null,"-",
null, "Severe","147", "Rhodes") '"'")

cursor.execute ('''INSERT INTO earthgk VALUES
(39,5,-186,"-",2,22,null,33.4,104.8,null,null,null,"-",760,
null,"48",null)"'"'")

cursor.execute ('''"INSERT INTO earthgk VALUES
(39,6,-70,"-",6,1,null,36.3,118.,null,null,9,"-",6000,null,
"48",null)'"")

print (" Earthquake table loaded")
db.commit ()
db.close ()

18.5.4 Example 4 - loading the regions table
Here is the second.

import sqglite3

db = sglite3.connect (':memory:")

db = sglite3.connect ('chapter09')

Get a cursor object

cursor = db.cursor ()

cursor.execute ('''INSERT INTO regions VALUES
("Africa",3,1,"Algeria",

"People's Democratic Republic of Algeria","Africa",1,
null, "Africa",1,"Developing market economies","Africa",5)'''")
cursor.execute ('''INSERT INTO regions VALUES
("Africa",6,1,"Angola","People's Republic of Angola",
"Africa",1l,null,"Africa", 1,"Developing market economies",
"Africa",5)''")

cursor.execute ('''INSERT INTO regions VALUES
("Africa",17,1,"Benin", "People's Republic of Benin",
"Africa",1l,null,"Africa", 1,"Developing market economies",
"Africa",5)''")

print (" Regions table loaded")
db.commit ()

print (" Database commit")
db.close ()

Ian D Chivers Chapter 18

228 Databases and sqlite

print (" Database close")

18.5.5 Example 5 - loading the tsunami table
Here is the third,

import sglite3

db = sglite3.connect(':memory:")

db = sglite3.connect ('chapter09')

Get a cursor object

cursor = db.cursor ()

cursor.execute ('''"INSERT INTO tsunami VALUES
("Asia",4,"China",4,23.13,113.33,null,1765,5,null,
" " null,null,null,null,null,39,null)"'"'")
cursor.execute ('''"INSERT INTO tsunami VALUES
("Asia",4,"China",4,22.3,114.18,null,1960,5,22,
"",23,22,20,27,9,39,null)"''")

cursor.execute ('''"INSERT INTO tsunami VALUES
("Asia",4,"China; Taiwan",4,25.15,121.75,null,1917,5,06,
" ",null,null,null,4,42,40,"Taiwan; Keelung")''")

print (" Tsunami table loaded")
db.commit ()

print (" Database commit")
db.close ()

print (" Database close")

18.5.6 Example 6 - Querying the tables

Here is the query command file.

import sqglite3

db = sglite3.connect (':memory:")

db = sglite3.connect ('chapter09')

Get a cursor object

cursor = db.cursor()

print (" Regions query")

for row in cursor.execute ("SELECT * FROM regions"):
print (row)

db.close ()

18.6 Using SQLite from the command line

You can also use SQLite from the command line.

18.7 Creating a database of the Met Office data
In this section we create a database based on the data in the Met Office station data.

18.7.1 Example 7 - creating the database
Here is the source file.

import sqglite3

db = sglite3.connect (':memory:")
db = sqglite3.connect ('met office')
db.close ()

Chapter 18 Ian D Chivers

Databases and sqlite

18.7.2 Example 8 - creating a table for one of the sites
Here is the source file

import sglite3

db = sglite3.connect(':memory:")
db = sqglite3.connect('met office')
Get a cursor object

cursor = db.cursor ()

cursor.execute('"''
create table cwmystwyth

(

s_year integer ,

s month integer ,

t max real p
t min real ’
af days integer ,

rain real ’
sun real

)

lll)
db.commit ()

print (" Cwmystwyth table created")
db.close ()

18.7.3 Example 9 - loading data into the table
Here is a sample of the source file.

import sqglite3

db = sglite3.connect (':memory:")

db = sqglite3.connect ('met office')

Get a cursor object

cursor = db.cursor()

cursor.execute (''"'INSERT INTO cwmystwyth VAL-
UES(1959,1,4.5,-1.9,20,null,57.2)"''")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,2,7.3,0.9,15,null,87.2)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,3,8.4,3.1,3,null,81l.6)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES(1959,4,10.8,3.7,1,null,107.4)"''")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,5,15.8,5.8,1,null,213.5)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,6,16.9,8.2,0,null,209.4)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,7,18.5,9.5,0,null,167.8)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,8,19.0,10.5,0,null,164.8)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,9,18.3,5.9,0,null,196.5)"'"'")

Ian D Chivers

229

Chapter 18

230 Databases and sqlite

cursor.execute (''"INSERT INTO cwmystwyth VAL-
UES(1959,10,14.8,7.9,1,null,101.1)"''")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,11,8.8,3.9,3,null,38.9)"''")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1959,12,7.2,2.5,3,null,19.2)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1960,1,6.3,0.6,15,null,30.7)"'"'")
cursor.execute ('''"INSERT INTO cwmystwyth VAL-
UES (1960,2,5.3,-0.3,17,null,50.2)"'"'")

This is just a subset.

18.7.4 Example 10 - simple table query
Here is the source file.

import sglite3

db = sglite3.connect(':memory:")
db = sqglite3.connect('met office')
Get a cursor object

cursor = db.cursor ()

print (" Cwmystwyth query")
for row in cursor.execute ("SELECT * FROM cwmystwyth order by
rain") :
print (row)
db.close ()

Here is some sample output.

Cwmystwyth query
1959, 1, 4.5, -1.9, 20, None, 57.2)

(

(1959, 2, 7.3, 0.9, 15, None, 87.2)
(1959, 3, 8.4, 3.1, 3, None, 81.6)
(1959, 4, 10.8, 3.7, 1, None, 107.4)

1967, 10, 11.5

(, 6.5, 0, 400.1, 43.6)
(2002, 2, 8.6, 2.9, 5, 401.3, 38.2)

(1965, 12, 7.0, 1.6, 8, 417.3, 31.4)
(1966, 12, 7.5, 2.7, 3, 419.8, 17.9)
(2000, 11, 8.2, 3.5, 1, 424.4, 15.2)
(2009, 11, 5.4, 4.9, 0, 425.4, 34.0)

The row is the record returned by the SQL select statement.

18.7.5 Example 11 - computing averages
Here is the source file.

import sqglite3

db = sglite3.connect (':memory:")
db = sqglite3.connect ('met office')
Get a cursor object

cursor = db.cursor()

Chapter 18 Ian D Chivers

Databases and sqlite 231

months=["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"]
print (" Cwmystwyth monthly averages")
print (" mm ins™)
for month in range(1,13):
for row in cursor.execute ("SELECT AVG(rain) FROM cwmystwyth

where s month == ?", (month,)):

line=row[0]

average=float (line)

average ins=average/25.4

print (" {0:} {1:7.2f} {2:7.2f}".for-
mat (months[month-1],average,average ins))
db.close ()

Here is the output.

Cwmystwyth monthly averages
mm ins

Jan 186.55 7.34
Feb 134.09 5.28
Mar 139.91 5.51
Apr 109.43 4.31
May 104.87 4.13
Jun 107.35 4.23
Jul 124.83 4.91
Aug 137.44 5.41
Sep 150.97 5.94
Oct 189.16 7.45
Nov 205.41 8.09
Dec 210.75 8.30

Here we loop over the months as well.

18.7.6 Example 12 - Finding the wettest month and displaying the year,
month and rainfall

Here is the source.

import sglite3
db = sglite3.connect(':memory:")
db sglite3.connect ('met office')
Get a cursor object
cursor = db.cursor ()
print (" Cwmystwyth maximum monthly rainfall")
print (" mm ins")
for row in cursor.execute ("SELECT s year , s month ,
MAX (rain) FROM cwmystwyth") :
y=row [0]
m=row[1l]
rmm = row/[2]
rins= rmm/25.4
print (" {0:} {1:} {2:7.2f} {3:7.2f}".for-
mat (y,m, rmm, rins))

Ian D Chivers Chapter 18

232 Databases and sqlite

db.close ()
Here is the output.

Cwmystwyth maximum monthly rainfall
mm ins
2009 11 425.40 16.75

18.7.7 Example 13 - Finding the wettest months and displaying the year,
month and rainfall

Here is the source.

import sglite3

db = sglite3.connect(':memory:")

db = sqglite3.connect('met office')

Get a cursor object

cursor = db.cursor ()

print (" Cwmystwyth maximum monthly rainfall values")
print (" mm ins")

for row in cursor.execute ("SELECT s year , s month ,
MAX (rain) FROM cwmystwyth GROUP BY s month"):
y=row [0]
m=row[1l]
rmm = rowl[2]
rins= rmm/25.4
print (" {0:4} {1:2} {2:7.2f} {3:7.2f}".for-
mat (y,m, rmm, rins))
db.close ()

Here is the output.

Cwmystwyth maximum monthly rainfall wvalues

mm ins
2008 1 348.90 13.74
2002 2 401.30 15.80
1981 3 350.00 13.78
1970 4 222.70 8.77
1979 5 247.00 9.72
1985 6 259.00 10.20
2007 7 260.80 10.27
1992 8 257.40 10.13
2004 9 283.50 11.16
1967 10 400.10 15.75
2009 11 425.40 16.75
1966 12 419.80 16.53

We could make the y and m variables into numpy arrays of course.

18.8 Example 14 - doing monthly average calculations using the
genfromtxt example in the 10 chapter

Here is an example based on the genfromtxt example in chapter 11. Here is the new
source.

Chapter 18 Ian D Chivers

Databases and sqlite 233

import numpy as np

import math

data file name="cwmystwythdata.txt"

month names = ["January" , "Februry" , "March" , "April" ,

"May" , "June" , "July" , "August" , "September" , "October"

, "November" , "December"]

matrix = np.genfromtxt(data file name, \
skip header=7 , \
skip footer=1 , \
usecols=(0,1,2,3,4,5,6), \
autostrip=True , \

dtype= (int, int, float, float, int, float, float), \

missing values={"---"},\
)
n=matrix.size
print (n)
print (type (matrix))
n_months=12
month=0
monthly sums = np.zeros([n months],dtype=np.float64)
monthly averages = np.zeros([n months],dtype=np.float64)
monthly averages ins = np.zeros([n months],dtype=np.float64)
monthly counts = np.zeros([n months],dtype=np.int32)
monthly nans = np.zeros([n months],dtype=np.int32)
for i in range(0,n):
row=matrix[i]
month = row[l] - 1
rainfall = row[5]
if (math.isnan(rainfall)):
monthly nans[month] = monthly nans[month] + 1
else:
monthly counts[month] = monthly counts[month] + 1
monthly sums[month]=monthly sums[month] + rainfall
print (" Month mm in Valid Miss-—
ing")
for i in range(0,n months) :
monthly averages([i] = monthly sums[i] /
monthly counts([i]
monthly averages ins[i] = monthly averages[i] / 25.4
print (" {:12s} {:6.2f} {:6.2f} {:4d}

{:4d}".format (month names[i],monthly averages[i],monthly aver-
ages_ins[i],monthly counts[i],monthly nans[i]))
Here is the output.

618

<class 'numpy.ndarray'>
Month mm in Valid Missing
January 186.55 7.34 49 2
February 134.09 5.28 49 2

Ian D Chivers Chapter 18

234 Databases and sqlite

March 139.91 5.51 50 2
April 109.43 4.31 49 2
May 104.87 4.13 50 2
June 107.35 4.23 50 2
July 124.83 4.91 50 2
August 137.44 5.41 50 2
September 150.97 5.94 50 2

October 189.16 7.45 49 2
November 205.41 8.09 48 3

December 210.75 8.30 46 5

Compare the output to that from example 11. Do the results aggree?

18.9 Problems
1. Run the examples in this chapter.
2. If you visit

http://www.un.org/en/members

you will see a list of UN member states. Here is a list based on that information.

Albania 14/12/1955
Algeria 08/10/1962
Andorra 28/07/1993
Angola 01/12/1976
Antigua and Barbuda 11/11/1981
Argentina 24/10/1945
Armenia 02/03/1992
Australia 01/11/1945
Austria 14/12/1955
Azerbaijan 02/03/1992
Bahamas 18/09/1973
Bahrain 21/09/1971
Bangladesh 17/09/1974
Barbados 09/12/1966
Belarus 24/10/1945
Belgium 27/12/1945
Belize 25/09/1981

Chapter 18

Ian D Chivers

Databases and sqlite

Benin

Bhutan

Bolivia (Plurinational State of)
Bosnia and Herzegovina
Botswana

Brazil

Brunei Darussalam
Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Canada

Central African Republic
Chad

Chile

China

Colombia

Comoros

Congo

Costa Rica

Cote D'lIvoire

Croatia

Cuba

Cyprus

Czech Republic

Ian D Chivers

20/09/1960

21/09/1971

14/11/1945

22/05/1992

17/10/1966

24/10/1945

21/09/1984

14/12/1955

20/09/1960

18/09/1962

16/09/1975

14/12/1955

20/09/1960

09/11/1945

20/09/1960

20/09/1960

24/10/1945

24/10/1945

05/11/1945

12/11/1975

20/09/1960

02/11/1945

20/09/1960

22/05/1992

24/10/1945

20/09/1960

19/01/1993

235

Chapter 18

236 Databases and sqlite

Democratic People's Republic of Korea
Democratic Republic of the Congo
Denmark

Djibouti

Dominica
Dominican Republic
Ecuador

Egypt

El Salvador
Equatorial Guinea
Eritrea

Estonia

Ethiopia

Fiji

Finland

France

Gabon

Gambia

Georgia

Germany

Ghana

Greece

Grenada

Guatemala

Guinea

Guinea Bissau

Guyana

Chapter 18 Ian D Chivers

17/09/1991

20/09/1960

24/10/1945

20/09/1977

18/12/1978

24/10/1945

21/12/1945

24/10/1945

24/10/1945

12/11/1968

28/05/1993

17/09/1991

13/11/1945

13/10/1970

14/12/1955

24/10/1945

20/09/1960

21/09/1965

31/07/1992

18/09/1973

08/03/1957

25/10/1945

17/09/1974

21/11/1945

12/12/1958

17/09/1974

20/09/1966

Databases and sqlite

Haiti
Honduras
Hungary
Iceland

India
Indonesia
Iran (Islamic Republic of)
Iraq

Ireland
Israel

Italy

Jamaica
Japan

Jordan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Lao People’s Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein

Lithuania

Ian D Chivers

24/10/1945

17/12/1945

14/12/1955

19/11/1946

30/10/1945

28/09/1950

24/10/1945

21/12/1945

14/12/1955

11/05/1949

14/12/1955

18/09/1962

18/12/1956

14/12/1955

02/03/1992

16/12/1963

14/09/1999

14/05/1963

02/03/1992

14/12/1955

17/09/1991

24/10/1945

17/10/1966

02/11/1945

14/12/1955

18/09/1990

17/09/1991

237

Chapter 18

238

Chapter 18

Databases and sqlite

Luxembourg
Madagascar
Malawi
Malaysia
Maldives
Mali

Malta
Marshall Islands
Mauritania
Mauritius
Mexico
Micronesia (Federated States of)
Monaco
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nauru

Nepal
Netherlands
New Zealand
Nicaragua
Niger
Nigeria

Norway

Ian D Chivers

24/10/1945

20/09/1960

01/12/1964

17/09/1957

21/09/1965

28/09/1960

01/12/1964

17/09/1991

27/10/1961

24/04/1968

07/11/1945

17/09/1991

28/05/1993

27/10/1961

28/06/2006

12/11/1956

16/09/1975

19/04/1948

23/04/1990

14/09/1999

14/12/1955

10/12/1945

24/10/1945

24/10/1945

20/09/1960

07/10/1960

27/11/1945

Databases and sqlite

Oman

Pakistan

Palau

Panama

Papua New Guinea
Paraguay

Peru

Philippines

Poland

Portugal

Qatar

Republic of Korea
Republic of Moldova
Romania

Russian Federation
Rwanda

Saint Kitts and Nevis
Saint Lucia

Saint Vincent and the Grenadines
Samoa

San Marino

Sao Tome and Principe
Saudi Arabia
Senegal

Serbia

Seychelles

Sierra Leone

Ian D Chivers

07/10/1971

30/09/1947

15/12/1994

13/11/1945

10/10/1975

24/10/1945

31/10/1945

24/10/1945

24/10/1945

14/12/1955

21/09/1971

17/09/1991

02/03/1992

14/12/1955

24/10/1945

18/09/1962

23/09/1983

18/09/1979

16/09/1980

15/12/1976

02/03/1992

16/09/1975

24/10/1945

28/09/1960

01/11/2000

21/09/1976

27/09/1961

239

Chapter 18

240

Chapter 18

Databases and sqlite

Singapore

Slovakia

Slovenia

Solomon Islands
Somalia

South Africa

South Sudan

Spain

Sri Lanka

Sudan

Suriname

Swaziland

Sweden

Switzerland

Syrian Arab Republic
Tajikistan

Thailand

The former Yugoslav Republic of Macedonia
Timor-Leste

Togo

Tonga

Trinidad and Tobago
Tunisia

Turkey
Turkmenistan
Tuvalu

Uganda

Ian D Chivers

21/09/1965

19/01/1993

22/05/1992

19/09/1978

20/09/1960

07/11/1945

14/07/2011

14/12/1955

14/12/1955

12/11/1956

04/12/1975

24/09/1968

19/11/1946

10/09/2002

24/10/1945

02/03/1992

16/12/1946

08/04/1993

27/09/2002

20/09/1960

14/09/1999

18/09/1962

12/11/1956

24/10/1945

02/03/1992

05/09/2000

25/10/1962

Databases and sqlite 241

Ukraine 24/10/1945
United Arab Emirates 09/12/1971
United Kingdom of Great Britain and Northern Ireland 24/10/1945
United Republic of Tanzania 14/12/1961
United States of America 24/10/1945
Uruguay 18/12/1945
Uzbekistan 02/03/1992
Vanuatu 15/09/1981
Venezuela (Bolivarian Republic of) 15/11/1945
Viet Nam 20/09/1977
Yemen 30/09/1947
Zambia 01/12/1964
Zimbabwe 25/08/1980
Afghanistan 19/11/1946

Compare this data with that in the regions table. What updates are you going to make to the
regions table in the light of the changes?

3. Here are the column names from the Earthquake table.

earthgk WITH +
countryn +
FEarthgkn +

year
Yearn
Month
Day

Time
latitude
longitud
depth
magnitud
unknownl
unknown?
deaths
strength
refs +
sregion

+ 4+ + + +

T

Do a select on the table using the following columns

Ian D Chivers Chapter 18

242 Databases and sqlite

e latitude

e longitud
e magnitud
e deaths

Order by magnitude and number of deaths.

Write the data to a file. We will use the data in the chapter on matplotlib, and plot a map of
earthquakes.

Chapter 18 Ian D Chivers

Regular expressions and pattern matching 243

19 Regular expressions and pattern
matching

The Unix operating systems was one of the first computer systems to make pattern match-
ing tools available using regular expressions. The following components of the Unix and
Linux operating system support pattern matching

ed the standard command driven editor

vi the Unix editor. It is sometimes the only editor available on a
Unix or Linux system.

grep general regular expression parser

egrep extended version of the above

farep file based version of the above

sed stream version of vi. Works really well on large files.

They enable the solution of quite a range of problems that would be difficult or even im-
possible in practice if they didn't exist.

I've used them several times in anger

the production of a typeset version of the college telephone directory whilst at
Imperial College. The departments were asked to provide files which contained
details of the people in their departments. These files were processed in two
ways. The first involved the production of the departmental entries in the tele-
phone directory and the second involved a sorted list of all people and personnel
at Imperial. The process is going to be repetitive and so manually producing the
telephone directory every 2 or 3 months would be very time consuming and er-
ror prone.

the production of the United Nations Environment Program Data reports. I had
two secondments to UNEP to work on the production of the second and third
editions of these reports. Some of the tables are complex and span over 20
pages. They involve large amounts of complex numeric data. Again the manual
typesetting of these reports is tedious and error prone.

Database administrator for an EEC study into environmental kidney damage due
to exposure to heavy metals and organic solvents. It involved the construction of
a database of all of the test results (over 100 tests) from 8 laboratories across
Europe involving Belgium (Antwerp and Louvain), Germany (Hannover and
Berlin), Spain, Italy, Poland and the UK. Once the database had been con-
structed statistical analysis of the data started. Several hundred models were run,
and some of the command files for these runs ran into several thousand lines of
SAS, the statistical package we used to analyse the data.

I use the tools on a day to day basis, mainly the vi editor, which is one of the first things I
install on any Windows based PC I work with. Learning how to use regular expressions and
pattern matching will quickly repay the time and effort involved.

A theoretical coverage can be found in the Aho, Hopcroft and Ullman book. Details are
given in the bibliography at the end of the chapter.

Ian D Chivers Chapter 19

244 Regular expressions and pattern matching

A regular expression is a pattern that the regular expression engine attempts to match in in-
put text. A pattern consists of one or more character literals, operators, or constructs.

I've taken the information below from standard Unix and Linux sources.

19.1 Metacharacters

Symbol Action

. any character

* Zero or more

A start of line

$ end of line

\ escape

[] match one from a set

\ named regular expression

\ range of instances

\> match words beginning or end
one or more preceding

! zero or more preceding

| separate choices to match

() group expressions to match

Substitutions are regular expression language elements that are supported in replacement
patterns.

\(
M
\<
+
(7

19.2 Example 1 - UK post codes

The following information is taken from Wikipedia. The format of UK post codes is as fol-
lows, where A signifies a letter and 9 a digit:

Format Example Coverage

A9 9AA M1 1AA B,E, G, L, M, N, S, W postcode areas

A99 9AA B33 8TH

AA9 9AA CR2 6XH All postcode areas except B, E, G, L, M, N, S, W, WC

AA99 9AA DNS5S5 1PT

A9A 9AA WIA THQ EIW, NIC, NIP, WI postcode districts (high-density areas
where more codes were needed)

AA9A 9AA ECIA IBB WC postcode area; ECI-EC4, NWIW, SE1P, SW1 postcode

districts (high-density areas where more codes were needed)

We will use the above information to write a program that will test for the validity of a UK
post code using the regular expression capability of Python.

The first thing we need to do is construct the patterns we are interested in matching. The
following lines do this.

"(la-zA-Z] [0][\\s][0—9][a—zA—Z][a—zA—Z])"

"| ([a-zA-Z][0-9]1[0-9][\SJ[-9] la-zA-Z] [a-zA-Z])"

"| ([a-zA-Z2] [a-zA-Z] [O][\\SJ[-9] [a-zA-Z] [a-zA-Z])"

"| ([a-zA-Z] [a-zA-Z] [0-9] [0-9] [\\s] [0-9] [a-zA-Z] [a-zA-Z])"

"| ([a-zA-2]1[0-9] [a-zA- Z][\\S][-9] [a-zA-Z] [a-zA-Z])"

"| ([a-zA-Z] [a-zA-Z][0-9] [a-zA-Z] [\\s] [0-9] [a-zA-Z] [a-zA-Z])"

Each lines matches one of the valid UK postcode patterns.
Here is the source code.

import re

Chapter 19 Ian D Chivers

Regular expressions and pattern matching 245

def main () :

sl = "([a-zA-Z][0-9][\\s][0-9] [a-zA-Z] [a-zA-Z])"
s2 = "|([a-2zA-2][0-9][0-9] [\\s] [0-9] [a-zA-Z] [a-zA-Z])"
83 — H| ([a_ZA—Z] [a—ZA—Z] [0_9] [\\S] [0_9] [a_ZA_Z] [a_ZA_Z]) "
s4 =

"| ([a-zA-Z] [a-2zA-Z] [0-9][0-9] [\\s] [0-9] [a-zA-Z] [a-zA-Z])"
s5 = "|(la-zA-2][0-9] [a-zA-Z] [\\s] [0-9] [a-zA-Z] [a-zA-Z])"
s6 =

"| ([a-zA-Z] [a-zA-Z][0-9] [a-zA-Z] [\\s] [0-9] [a-zA-Z] [a-zA-Z])"
postcode = sl+s2+s3+s4+s5+s6;

p = re.compile(postcode)

print (p)

print (p.match(""))

p.match('sw2 5jb'))

p.match ('npl2 Ope'))

p.match('sw2 5jb npl2 Ope'))
p.findall('sw2 53b npl2 Ope'))
p.findall ('sw2 5jb npl2 Ope xx xx'))

if (__name == " main_ "):

main ()
Here is the output.

re.compile

(" ([a-zA-Z]1[0-91[\\s]1[0-9])[a-zA-Z][a-zA-Z]) | ([a-zA-Z][0-9][0-9
1[\\s][0-9] [a-zA-Z] [a-zA-Z]) | ([a-zA-Z] [a-zA-Z] [0-9] [\\s] [0-9] [
a-zA-7][a-zA-Z]) | ([a-zA-7Z] [a-2zA-Z2] [0-9] [0-9] [\\s] [0-9] [a-zA-7]
[a-zA-Z2]) | ([a-2z)

None

< _sre.SRE Match object; span=(0, 7), match='sw2 5jb'>

< _sre.SRE Match object; span=(0, 8), match='npl2 Ope'>

< _sre.SRE Match object; span=(0, 7), match='sw2 5jb'>

[(ll’ ll’ 'SW2 5jbl’ ll’ ll’ ll)’ (ll’ ll’ ll’ lnplz Opel’
ll’ ll)]

[(ll’ ll’ 'SW2 5jbl’ ll’ ll’ ll)’ (ll’ ll’ ll’ lnplz Opel’
ll’ ll)]

Test the program out with your home postcode.
19.3 Problems
1. Try the example out.

19.4 Bibliography

Aho A.V.,, Hopcroft J.E., Ullman J.D., The Design and Analysis of Computer Algorithms,
Addison Wesley.

United Nations Environment Programme, Environmental Data Report, 1989-1990,
Blackwell, ISBN 0-631-16987-3.

Ian D Chivers Chapter 19

246 Regular expressions and pattern matching

United Nations Environment Programme, Environmental Data Report, 1991-1992,
Blackwell, ISBN 0-631-18083-4.

Chapter 19 Ian D Chivers

Built in exceptions 247

Don’t interrupt me while I’'m interrupting.
Winston Churchill.

20 Built in exceptions

The information in this chapter is taken from the documentation from the Python Standard
Library.

In Python, all exceptions must be instances of a class that derives from BaseException. In a
try statement with an except clause that mentions a particular class, that clause also handles
any exception classes derived from that class (but not exception classes from which it is de-
rived). Two exception classes that are not related via subclassing are never equivalent, even
if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in func-
tions. Except where mentioned, they have an “associated value” indicating the detailed
cause of the error. This may be a string or a tuple of several items of information (e.g., an
error code and a string explaining the code). The associated value is usually passed as argu-
ments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to
report an error condition “just like” the situation in which the interpreter raises the same ex-
ception; but beware that there is nothing to prevent user code from raising an inappropriate
error.

The built-in exception classes can be subclassed to define new exceptions; programmers are
encouraged to derive new exceptions from the Exception class or one of its subclasses, and
not from BaseException. More information on defining exceptions is available in the Py-
thon Tutorial under User-defined Exceptions.

When raising (or re-raising) an exception in an except or finally clause context is auto-
matically set to the last exception caught; if the new exception is not handled the traceback
that is eventually displayed will include the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception cur-
rently being handled), the implicit exception context can be supplemented with an explicit
cause by using from with raise:

raise new exc from original exc

The expression following from must be an exception or None. It will be set as _ cause
on the raised exception. Setting cause _ also implicitly sets the suppress context at-
tribute to True, so that using raise new_exc from None effectively replaces the old excep-
tion with the new one for display purposes (e.g. converting KeyError to AttributeError,
while leaving the old exception available in __ context for introspection when debugging.

The default traceback display code shows these chained exceptions in addition to the
traceback for the exception itself. An explicitly chained exception in _ cause is always
shown when present. An implicitly chained exception in _ context is shown only if
__cause _ is None and __ suppress_context is false.

In either case, the exception itself is always shown after any chained exceptions so that the
final line of the traceback always shows the last exception that was raised.

20.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

Ian D Chivers Chapter 20

248

Built in exceptions

BasekException
+-- SystemExit
+-- KeyboardInterrupt

+-- GeneratorExit
+-- Exception
+-- StoplIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-—- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-—- BufferError
+-- EOFError
+-—- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-—- ProcessLookupError
| +-- TimeoutError
+-—- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-—- SystemError
+-—- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError

Chapter 20

Ian D Chivers

Built in exceptions 249

| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

20.2 Problems

There are no problems in this chapter.

Ian D Chivers Chapter 20

250 Concurrent execution - threading

21 Concurrent execution - threading

The material in this chapter is taken from the Standard Python Library reference material.
The modules described in this chapter provide support for concurrent execution of code.
The appropriate choice of tool will depend on the task to be executed (CPU bound vs 10
bound) and preferred style of development (event driven cooperative multitasking vs pre-
emptive multitasking).

21.1 Thread based parallelism - the threading package

In this section we have two short examples. The first is a serial solution to a problem, and
the second is a multi threaded solution. The example is taken from

http://www.wellho.net/solutions/
python-python-threads-a-first-example.html

In the example below I use ip addresses based on my set up at home. My network has a
base address of 192.168.0, and I have machines in the range 0 to 30. Both examples ran on
an openSuSe 13.1 system. This example will not run on a Windows system.

21.2 Example 1 - Serial solution
Here is the source

import os
import re
import time
import sys

def main () :

lifeline = re.compile(r" (\d) received")
report = ("No response","Partial Response","Alive")

print (time.ctime())

for host in range (0, 30):

ip = "192.168.0."+str (host)
pingaling = os.popen("ping -g -c2 "+ip,"r")
print ("Testing ", ip)
sys.stdout.flush ()
while 1:

line = pingaling.readline ()

if not line: break

igot = re.findall(lifeline, line)

if igot:

print (report[int (igot[0]) 1)

print (time.ctime())

"

if (__name == " main "):
main ()

Here is the output

Chapter 21 Ian D Chivers

python3
Fri Feb
Testing
192.168.0.0

c2101.py
15 15:21:00 2019

Concurrent execution - threading

Do you want to ping broadcast? Then
local firewall rules.

Testing 192.168.0.1
Alive

Testing 192.168.0.2
No response

Testing 192.168.0.3
No response

Testing 192.168.0.4
No response

Testing 192.168.0.5
No response

Testing 192.168.0.6
No response

Testing 192.168.0.7
No response

Testing 192.168.0.8
No response

Testing 192.168.0.9
No response

Testing 192.168.0.10
Alive

Testing 192.168.0.11
Alive

Testing 192.168.0.12
No response

Testing 192.168.0.13
No response

Testing 192.168.0.14
No response

Testing 192.168.0.15
Alive

Testing 192.168.0.16
No response

Testing 192.168.0.17
No response

Testing 192.168.0.18
No response

Testing 192.168.0.19
Alive

Testing 192.168.0.20
No response

Testing 192.168.0.21
No response

Testing 192.168.0.22
Alive

Ian D Chivers

-b.

If not,

251

check your

Chapter 21

252 Concurrent execution - threading

Testing 192.168.0.23
No response

Testing 192.168.0.24
No response

Testing 192.168.0.25
No response

Testing 192.168.0.26
No response

Testing 192.168.0.27
No response

Testing 192.168.0.28
No response

Testing 192.168.0.29
No response

Fri Feb 15 15:22:33 2019

We have a total time of one minute 32 seconds.

21.3 Example 2 - Multi-threaded solution

Here is the source.

import os

import re

import time

import sys

from threading import Thread

class testit (Thread):
def init (self,ip):
Thread. init (self)
self.ip = ip
self.status = -1
def run(self):
pingaling = os.popen("ping -g -c2 "+self.ip,"r")
while 1:
line = pingaling.readline ()
if not line: break
igot = re.findall (testit.lifeline,line)
if igot:
self.status = int (igot[0])

testit.lifeline = re.compile(r" (\d) received")
report = ("No response","Partial Response","Alive")

print (time.ctime())
pinglist = []
for host in range (0, 30):

ip = "192.168.0."+str (host)
current = testit (ip)

Chapter 21 Ian D Chivers

Concurrent execution - threading

pinglist.append (current)
current.start ()

for pingle in pinglist:

pingle.join ()
print ("Status from

print (time.ctime ())

Here is the output from the same system as the serial solution.

python3 c2102.py
Fri Feb 15 15:24:15 2019

Do you want to ping broadcast? Then
local firewall rules.

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
Fri Feb 15 15:24:

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

168.0.0
168.0.1
168.0.2
168.0.3
168.0.4
168.0.5
168.0.6
168.0.7
168.0.8
168.0.9
168.0.10
168.0.11
168.0.12
168.0.13
168.0.14
168.0.15
168.0.16
168.0.17
168.0.18
168.0.19
168.0.20
168.0.21
168.0.22
168.0.23
168.0.24
168.0.25
168.0.26
168.0.27
168.0.28
168.0.29
27 2019

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

-b.

Alive
Alive

No
No
No
No
No
No
No
No

response
response
response
response
response
response
response

response
Alive

Alive

No response
No response
No response
Alive

No response
No response
No response
Alive

No response
No response
Alive

No response
No response
No response
No response
No response
No response
No response

If not,

253

",pingle.ip,"is", report[pingle.status])

check your

The elapsed time is now12 seconds. Quite an improvement over the serial version.

21.4 Problems

1. Run the examples in this chapter. What timing figures did you get?

Ian D Chivers

Chapter 21

254 Concurrent execution - threading

Chapter 21 Ian D Chivers

Concurrent execution - multi processing 255

22 Concurrent execution - multi
processing

22.1 Introduction
The material in this chapter is taken from the Standard Python Library reference material.
https://docs.python.org/3/library/multiprocessing.html

The modules described in this chapter provide support for concurrent execution of code.
The appropriate choice of tool will depend on the task to be executed (CPU bound vs 10
bound) and preferred style of development (event driven cooperative multitasking vs pre-
emptive multitasking).

22.2 Process based parallelism - the multiprocessing package

multiprocessing is a package that supports spawning processes using an API similar to the
threading module. The multiprocessing package offers both local and remote concurrency,
effectively side-stepping the Global Interpreter Lock by using subprocesses instead of
threads. Due to this, the multiprocessing module allows the programmer to fully leverage
multiple processors on a given machine. It runs on both Unix and Windows.

The multiprocessing module also introduces APIs which do not have analogs in the thread-
ing module. A prime example of this is the Pool object which offers a convenient means of
parallelizing the execution of a function across multiple input values, distributing the input
data across processes (data parallelism). The following example demonstrates the common
practice of defining such functions in a module so that child processes can successfully im-
port that module. This basic example of data parallelism using Pool,

from multiprocessing import Pool

def f(x):
return x*x

if name == ' main ':
p = Pool (5)
print(p.map (£, [1, 2, 3]))

will print to standard output
[1, 4, 9]

22.3 Contexts and start methodsq

Depending on the platform, multiprocessing supports three ways to start a process. These
start methods are

e spawn

e The parent process starts a fresh python interpreter pro-
cess. The child process will only inherit those resources
necessary to run the process objects run() method. In par-
ticular, unnecessary file descriptors and handles from the
parent process will not be inherited. Starting a process us-
ing this method is rather slow compared to using fork or
forkserver.

Ian D Chivers Chapter 22

256

Changed in version 3.4: spawn added on all unix platforms, and forkserver added for some
unix platforms. Child processes no longer inherit all of the parents inheritable handles on

e fork

Concurrent execution - multi processing

Available on Unix and Windows. The default on Win-
dows.

The parent process uses os.fork() to fork the Python inter-
preter. The child process, when it begins, is effectively
identical to the parent process. All resources of the parent
are inherited by the child process. Note that safely forking
a multithreaded process is problematic.

Available on Unix only. The default on Unix.

e forkserver

Windows.

22.4 Example 1 - Simple multi-processing on a 6 core system

In this program we are going to look at breaking a computational problem down and parti-
tion it over several processes. We will also look at timing of both the parallel solution and
the serial solution. Note that this example does not run correctly on the anaconda installa-
tion on Windows as of September 2018. You will need to run these examples on the cygwin
version. Here is the source for a six core system - an AMD Phenom II X6. Example 2 is for

When the program starts and selects the forkserver start
method, a server process is started. From then on, when-
ever a new process is needed, the parent process connects
to the server and requests that it fork a new process. The
fork server process is single threaded so it is safe for it to
use os.fork(). No unnecessary resources are inherited.

Available on Unix platforms which support passing file
descriptors over Unix pipes.

an 8§ core 7 system.

This example is designed for a 6 core system

from multiprocessing import Pool

import time

import numpy as np

import math

scale factor

n
nn

X =

start

= 10000000
= 6 * scale factor
= 0

np.empty([n],dtype=np.float6d)

= np.array ([0,

Chapter 22

1 * scale factor,
2 * scale factor,

Ian D Chivers

Concurrent execution - multi processing 257

3 * scale factor,
4 * scale factor,
5 * scale factor])

end = np.array ([scale factor,
2 * scale factor,
3 * scale factor,
4 * scale factor,
5 * scale factor,
6 * scale factor])

def partial sum(i):

return(sum(x[start[i] : end[i]]))
if name = == ' main_ ':

print (" Program starts")

print (" ",time.ctime(),end=" ")

tl=time.time ()

print (tl)

print (" n = ",n)

parallel sum = 0.0
serial sum = 0.0
psum = np.empty (
for i in range (0

psum[i]=0.0

[nn],dtype=np.float6d)
,nn) :

X = np.empty([n],dtype=np.float64)
for i in range(0,n):
x[1]=1.0

print (" x array initialised ",end=" ")
t2=time.time ()

print (" {0:2.12f} ".format (t2-tl))

tl=t2

print (" *** Pool called ")

pool = Pool (processes=nn)

print (" Pool creation took ", end= " ")
t2=time.time ()

t3=t2-tl

print (" {0:2.12f} ".format (t3))

tl=t2

result = pool.map(partial sum , ((i) for 1 in

range (nn)))

pool.close

Ian D Chivers Chapter 22

258 Concurrent execution - multi processing

pool.join

print (" *** Pool closed ",end=" ")
t2=time.time ()

td=t2-tl

print (" {0:2.12f} ".format (t2-tl))

tl=t2

for i in range (nn):
psum[i]=result[i]

parallel sum = sum(psum)

print (" Parallel sum = ",parallel sum)
t2=time.time ()

t5=t2-t1+t3+t4

print (" Parallel time
{0:2.12f}".format (thH))
tl=t2

serial sum=sum (x)
print (" Serial sum = ",serial sum)
t2=time.time ()

print (" Serial time
{0:2.12f}".format (t2-tl))
if (math.fabs(parallel sum - serial sum) > (1.0e-16)):
print(" XxXKK Frror XrKKKRM)
print (" Parallel and serial sums do not match")
print (" Are you using native Python on Windows?")
print (" Program ends")

22.5 Example 2 - Simple variant for an 8 core system

Here is the source code for an 8 core I7 system. Timing details for both versions are given
later.

This example is designed for an 8 core system
from multiprocessing import Pool

import time

import numpy as np

import math

scale factor = 10000000

n = 8 * scale factor
nn = 8

X = np.empty([n],dtype=np.float64)
start = np.array ([0,

scale factor,
scale factor,
scale factor,
scale factor,
scale factor,

oo W N
N

Chapter 22 Ian D Chivers

Concurrent execution - multi processing

6 * scale factor,
7 * scale factor])
end = np.array ([scale factor,
2 * scale factor,
3 * scale factor,
4 * scale factor,
5 * scale factor,
6 * scale factor,
7 * scale factor,
8 * scale factor])
def partial sum(i):
return(sum(x[start[i] : end[i]]))
if name = == ' main_ ':
print (" Program starts")
print (" ",time.ctime(),end=" ")
tl=time.time ()
print (tl)
print (" n = ",n)
parallel sum = 0.0
serial sum = 0.0
psum = np.empty([nn],dtype=np.float64d)
for i in range(0,nn):

psum[i]=0.0
X = np.empty([n],dtype=np.float64)
for i in range(0,n):
x[1]=1.0
print (" x array initialised ",end=" ")
t2=time.time ()
print (" {0:2.12f} ".format (t2-tl))

tl=t2

print (" *** Pool called ")

pool = Pool (processes=nn)

print (" Pool creation took ", end= "
t2=time.time ()

t3=t2-tl

print (" {0:2.12f} ".format(t3))

tl=t2

result = pool.map(partial sum , ((i) for 1 in

range (nn)))

pool.close
pool.join

print (" *** Pool closed ",end=" ")
t2=time.time ()

td=t2-tl

print (" {0:2.12f} ".format (t4))

tl=t2

for i in range (nn):
psum[i]=result[i]
parallel sum = sum(psum)
print (" Parallel sum = ",parallel sum)

259

Ian D Chivers Chapter 22

260 Concurrent execution - multi processing

t2=time.time ()

t5=t2-t1+t3+t4

print (" Parallel time
{0:2.12f}".format (t5))

tl=t2
serial sum=sum (Xx)
print (" Serial sum = ",serial sum)

t2=time.time ()
print (" Serial time
{0:2.12f}".format (t2-tl))

if (math.fabs(parallel sum - serial sum) > (1.0e-16)
print(" * Kk Kk ok k Error *****")
print (" Parallel and serial sums do not match")

print (" Are you using native Python on Windows?")
print (" Program ends")

22.6 Differences between the two version
Here is the diff output showing the differences between the two versions.

1cl
< # This example is designed for a 6 core system

> # This example is designed for an 8 core system
10,11c10,11

< n = 6 * scale factor

< nn = 6

> n = 8 * scale factor

> nn = 8

20c20,22

< 5 * scale factor])
> 5 * scale factor,

> 6 * scale factor,

> 7 * scale factor])
27c29,31

< 6 * scale factor])
> 6 * scale factor,

> 7 scale factor,

> 8 * scale factor])

22.7 Sample runs
Here is a run on the AMD 6 core system for a native Windows of Python.
Program starts

Fri May 10 14:37:46 2019 1557495466.1634073
n = 60000000

X array initialised 13.227007865906
*** Pool called
Pool creation took 0.275989532471

Chapter 22 Ian D Chivers

) :

Concurrent execution - multi processing 261

*** Pool closed
Parallel sum = 0.0
Parallel time
Serial sum

Serial time
* kK Kk Kk Kk Error * kK Kk Kk Kk

Parallel and serial sums do not match

60000000.0

2.543994665146

2.821985721588

9.751012563705

Are you using native Python on Windows?

Program ends

As can be seen the parallel and serial sums differ.

Here is a sample run for the Cygwin Python implementation of Windows.

Program starts

Fri May 10 14:39:25 2019 1557495565.3735597

n = 60000000

X array initialised

*** Pool called

Pool creation took

*** Pool closed

Parallel sum = 60000000.0
Parallel time

Serial sum = 60000000.0

Serial time
Program ends

The parallel and serial sums are the same.

Ian D Chivers

11.209353685379

2.172768115997
2.029023408890

4.201887845993

9.101023674011

Chapter 22

262

22.8 Summary timing table

Here are the results of running the programs on three systems under both Windows and

Concurrent execution - multi processing

Linux.

AMD Physical cores 6

Windows openSuSe

cygwin python
Initialisation 13.545349359512 12.626096487045 11.328769207001
Pool creation 2.256503820419 0.609584331512 0.015357732773
Pool closed 1.991185426712 2.359382629395 1.463187217712
Parallel time 1.991320371628 2.359382629395 1.463279008865
Serial 9.890810012817 8.423060894012 7.641946315765
Pool + parallel 6.239009618759 5.328349590302 2.941823959350
Total time 29.675168991088 | 26.377506971359 | 21.912539482116
Intel Physical cores 4

Hyperthreading *2

Windows openSuSe

cygwin anaconda
Initalisation 13.213007688522 15.205041885376 18.766371488571
Pool creation 2.221862316132 0.296875238419 0.116709947586
Pool closed 3.448457002640 3.296873569489 2.308131217957
Parallel time 3.448578357697 3.296873569489 0.000143527985
Serial 14.807518482208 8.238389492035 9.565270185471
Pool + parallel 9.118897676469 6.890622377397 2.424984693528
Total time 37.139423847199 | 30.334053754808 | 30.756626367570
Intel Physical cores 4

Hyperthreading *2

Windows openSuSe

cygwin anaconda
Initalisation 14.877320051193 15.358544111252
Pool creation 0.484356403350 0.160874843597
Pool closed 4.468796491623 2.801591157913
Parallel time 4.468796491623 2.801677703857
Serial 9.499331951141 9.257079601288
Pool + parallel 9.421949386596 5.764143705367
Total time 33.798601388930 | 30.379767417907

Chapter 22

Ian D Chivers

Concurrent execution - multi processing 263

229 Problems
1. Run the example(s) in this chapter. What sums and timing figures did you get?

Ian D Chivers Chapter 22

264

Modules

23 Modules

23.1 Introduction
The following is a complete list of the Python modules taken from the 3.5.1 documentation.

_ future

__main__

dummy _thread

_thread
a

abc

aifc
argparse
array

ast
asynchat
asyncio
asyncore
atexit
audioop
b

base64

bdb

binascii

binhex
bisect
builtins
bz2

c
calendar

cgi

cgitb
chunk
cmath
cmd

code

Chapter 23

Future statement definitions

The environment where the top-level script is run.
Drop-in replacement for the thread module.
Low-level threading API.

Abstract base classes according to PEP 3119.

Read and write audio files in AIFF or AIFC format.
Command-line option and argument parsing library.

Space efficient arrays of uniformly typed numeric values.

Abstract Syntax Tree classes and manipulation.

Support for asynchronous command/response protocols.
Asynchronous I/O, event loop, coroutines and tasks.

A base class for developing asynchronous socket handling services.
Register and execute cleanup functions.

Manipulate raw audio data.

RFC 3548: Basel6, Base32, Base64 Data Encodings; Base85 and
Ascii85
Debugger framework.

Tools for converting between binary and various ASCII-encoded bi-
nary representations.

Encode and decode files in binhex4 format.
Array bisection algorithms for binary searching.
The module that provides the built-in namespace.

Interfaces for bzip2 compression and decompression.

Functions for working with calendars, including some emulation of
the Unix cal program.

Helpers for running Python scripts via the Common Gateway Inter-
face.

Configurable traceback handler for CGI scripts.
Module to read IFF chunks.

Mathematical functions for complex numbers.
Build line-oriented command interpreters.

Facilities to implement read-eval-print loops.

Ian D Chivers

codecs
codeop
collections
colorsys
compileall
concurrent
configparser

contextlib

copy
copyreg
cProfile

crypt (Unix)
csv

ctypes

curses (Unix)

d
datetime
dbm
decimal
difflib
dis
distutils

doctest

dummy _threading

€

email

encodings
ensurepip

enum
errno

f
faulthandler
fentl (Unix)
filecmp
fileinput
fnmatch

formatter

Modules 265

Encode and decode data and streams.

Compile (possibly incomplete) Python code.

Container datatypes

Conversion functions between RGB and other color systems.

Tools for byte-compiling all Python source files in a directory tree.

Configuration file parser.
Utilities for with-statement contexts.
Shallow and deep copy operations.

Register pickle support functions.

The crypt() function used to check Unix passwords.
Write and read tabular data to and from delimited files.
A foreign function library for Python.

An interface to the curses library, providing portable terminal han-
dling.

Basic date and time types.

Interfaces to various Unix "database" formats.

Implementation of the General Decimal Arithmetic Specification.
Helpers for computing differences between objects.
Disassembler for Python bytecode.

Support for building and installing Python modules into an existing
Python installation.

Test pieces of code within docstrings.

Drop-in replacement for the threading module.

Package supporting the parsing, manipulating, and generating email
messages, including MIME documents.

Bootstrapping the "pip" installer into an existing Python installation
or virtual environment.

Implementation of an enumeration class.

Standard errno system symbols.

Dump the Python traceback.

The fentl() and ioctl() system calls.
Compare files efficiently.

Loop over standard input or a list of files.
Unix shell style filename pattern matching.

Deprecated: Generic output formatter and device interface.

Ian D Chivers Chapter 23

266

fpectl (Unix)

fractions
ftplib
functools
g

gc

getopt

getpass
gettext
glob

grp (Unix)
gzip

h

hashlib
heapq
hmac
html

http

i

imaplib
imghdr
imp
importlib
inspect
10
ipaddress
itertools
]

json

k
keyword
1

lib2to3

linecache

locale
logging
lzma

m

Chapter 23

Modules

Provide control for floating point exception handling.
Rational numbers.
FTP protocol client (requires sockets).

Higher-order functions and operations on callable objects.

Interface to the cycle-detecting garbage collector.

Portable parser for command line options; support both short and
long option names.

Portable reading of passwords and retrieval of the userid.
Multilingual internationalization services.

Unix shell style pathname pattern expansion.

The group database (getgrnam() and friends).

Interfaces for gzip compression and decompression using file objects.

Secure hash and message digest algorithms.

Heap queue algorithm (a.k.a. priority queue).

Keyed-Hashing for Message Authentication (HMAC) implementation
Helpers for manipulating HTML.

HTTP status codes and messages

IMAP4 protocol client (requires sockets).

Determine the type of image contained in a file or byte stream.
Deprecated: Access the implementation of the import statement.
The implementation of the import machinery.

Extract information and source code from live objects.

Core tools for working with streams.

IPv4/IPv6 manipulation library.

Functions creating iterators for efficient looping.

Encode and decode the JSON format.

Test whether a string is a keyword in Python.

the 2to3 library

This module provides random access to individual lines from text
files.

Internationalization services.
Flexible event logging system for applications.

A Python wrapper for the liblzma compression library.

Ian D Chivers

macpath
mailbox
mailcap

marshal

math

mimetypes

mmap
modulefinder
msilib (Windows)
msvert (Windows)
multiprocessing
n

netrc

nis (Unix)
nntplib

numbers

0

operator

optparse

oS

ossaudiodev (Linux, FreeBSD)

p
parser

pathlib
pdb

pickle
pickletools

pipes (Unix)
pkgutil
platform
plistlib
poplib

posix (Unix)

pprint
profile
pstats

pty (Linux)

Modules 267

Mac OS 9 path manipulation functions.
Manipulate mailboxes in various formats
Mailcap file handling.

Convert Python objects to streams of bytes and back (with different
constraints).

Mathematical functions (sin() etc.).

Mapping of filename extensions to MIME types.

Interface to memory-mapped files for Unix and Windows.
Find modules used by a script.

Creation of Microsoft Installer files, and CAB files.
Miscellaneous useful routines from the MS VC++ runtime.

Process-based parallelism.

Loading of .netrc files.
Interface to Sun's NIS (Yellow Pages) library.
NNTP protocol client (requires sockets).

Numeric abstract base classes (Complex, Real, Integral, etc.).

Functions corresponding to the standard operators.
Deprecated: Command-line option parsing library.
Miscellaneous operating system interfaces.

Access to OSS-compatible audio devices.

Access parse trees for Python source code.
Object-oriented filesystem paths

The Python debugger for interactive interpreters.
Convert Python objects to streams of bytes and back.

Contains extensive comments about the pickle protocols and
pickle-machine opcodes, as well as some useful functions.

A Python interface to Unix shell pipelines.

Utilities for the import system.

Retrieves as much platform identifying data as possible.

Generate and parse Mac OS X plist files.

POP3 protocol client (requires sockets).

The most common POSIX system calls (normally used via module
0s).

Data pretty printer.

Python source profiler.

Statistics object for use with the profiler.

Pseudo-Terminal Handling for Linux.

Ian D Chivers Chapter 23

268

pwd (Unix)
py_compile
pyclbr
pydoc

q

queue
quopri

r

random

e

readline (Unix)

reprlib

resource (Unix)

rlcompleter

runpy
S

sched

select
selectors
shelve

shlex

shutil

signal

site

smtpd
smtplib
sndhdr
socket
socketserver
spwd (Unix)
sqlite3

ssl

stat

statistics
string
stringprep
struct

subprocess

Chapter 23

Modules

The password database (getpwnam() and friends).
Generate byte-code files from Python source files.
Supports information extraction for a Python class browser.

Documentation generator and online help system.

A synchronized queue class.
Encode and decode files using the MIME quoted-printable encoding.

Generate pseudo-random numbers with various common distributions.
Regular expression operations.

GNU readline support for Python.

Alternate repr() implementation with size limits.

An interface to provide resource usage information on the current
process.

Python identifier completion, suitable for the GNU readline library.

Locate and run Python modules without importing them first.

General purpose event scheduler.

Wait for I/O completion on multiple streams.
High-level I/O multiplexing.

Python object persistence.

Simple lexical analysis for Unix shell-like languages.
High-level file operations, including copying.

Set handlers for asynchronous events.

Module responsible for site-specific configuration.

A SMTP server implementation in Python.

SMTP protocol client (requires sockets).

Determine type of a sound file.

Low-level networking interface.

A framework for network servers.

The shadow password database (getspnam() and friends).
A DB-API 2.0 implementation using SQLite 3.x.
TLS/SSL wrapper for socket objects

Utilities for interpreting the results of os.stat(), os.stat() and
os.fstat().

mathematical statistics functions
Common string operations.

String preparation, as per RFC 3453
Interpret bytes as packed binary data.

Subprocess management.

Ian D Chivers

sunau
symbol
symtable

Sys

sysconfig
syslog (Unix)
t

tabnanny

tarfile
telnetlib
tempfile
termios (Unix)
test
textwrap
threading
time

timeit
tkinter
token
tokenize
trace
traceback
tracemalloc
tty (Unix)
turtle

turtledemo

types
typing

u
unicodedata
unittest
urllib

uu

uuid

\

venv

A4
warnings

wave

Modules 269

Provide an interface to the Sun AU sound format.
Constants representing internal nodes of the parse tree.
Interface to the compiler's internal symbol tables.
Access system-specific parameters and functions.
Python's configuration information

An interface to the Unix syslog library routines.

Tool for detecting white space related problems in Python source files
in a directory tree.

Read and write tar-format archive files.

Telnet client class.

Generate temporary files and directories.

POSIX style tty control.

Regression tests package containing the testing suite for Python.
Text wrapping and filling

Thread-based parallelism.

Time access and conversions.

Measure the execution time of small code snippets.

Interface to Tcl/Tk for graphical user interfaces

Constants representing terminal nodes of the parse tree.

Lexical scanner for Python source code.

Trace or track Python statement execution.

Print or retrieve a stack traceback.

Trace memory allocations.

Utility functions that perform common terminal control operations.
An educational framework for simple graphics applications

A viewer for example turtle scripts

Names for built-in types.

Support for type hints (see PEP 484).

Access the Unicode Database.

Unit testing framework for Python.

Encode and decode files in uuencode format.

UUID objects (universally unique identifiers) according to RFC 4122

Creation of virtual environments.

Issue warning messages and control their disposition.

Provide an interface to the WAV sound format.

Ian D Chivers Chapter 23

270 Modules

weakref Support for weak references and weak dictionaries.
webbrowser Easy-to-use controller for Web browsers.
winreg (Windows) Routines and objects for manipulating the Windows registry.

winsound (Windows) Access to the sound-playing machinery for Windows.

wsgiref WSGI Utilities and Reference Implementation.

X

xdrlib Encoders and decoders for the External Data Representation (XDR).
xml Package containing XML processing modules

xmlrpc

z

zipapp Manage executable python zip archives

zipfile Read and write ZIP-format archive files.

zipimport support for importing Python modules from ZIP archives.

zlib Low-level interface to compression and decompression routines com-

patible with gzip.

The following information is taken from the Python tutorial.

23.2 Introduction to modules

If you quit from the Python interpreter and enter it again, the definitions you have made
(functions and variables) are lost. Therefore, if you want to write a somewhat longer pro-
gram, you are better off using a text editor to prepare the input for the interpreter and run-
ning it with that file as input instead. This is known as creating a script. As your program
gets longer, you may want to split it into several files for easier maintenance. You may also
want to use a handy function that you’ve written in several programs without copying its
definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in
an interactive instance of the interpreter. Such a file is called a module; definitions from a
module can be imported into other modules or into the main module (the collection of vari-
ables that you have access to in a script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is the mod-
ule name with the suffix .py appended. Within a module, the module’s name (as a string) is
available as the value of the global variable name .

23.3 Example 1 - simple module usage

For instance, use your favourite text editor to create a file called fibo.py in the current di-
rectory with the following contents:
Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
a, b =20, 1
while b < n:
print (b, end=' ")
a, b = Db, atb
print ()
def fib2(n): # return Fibonacci series up to n
result = []
a, b =20, 1

Chapter 23 Ian D Chivers

Modules 271

while b < n:
result.append (b)
a, b = Db, atb
return result
Now enter the Python interpreter and import this module with the following command:
>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol
table; it only enters the module name fibo there. Using the module name you can access the
functions:

>>> fibo.fib (1000)

112 35 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2 (100)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]python3

>>> fibo. name
'fibo'
If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib (500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

23.4 More on Modules

A module can contain executable statements as well as function definitions. These state-
ments are intended to initialize the module. They are executed only the first time the mod-
ule name is encountered in an import statement. [1] (They are also run if the file is exe-
cuted as a script.)

Each module has its own private symbol table, which is used as the global symbol table by
all functions defined in the module. Thus, the author of a module can use global variables
in the module without worrying about accidental clashes with a user’s global variables. On
the other hand, if you know what you are doing you can touch a module’s global variables
with the same notation used to refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all import
statements at the beginning of a module (or script, for that matter). The imported module
names are placed in the importing module’s global symbol table.

There is a variant of the import statement that imports names from a module directly into
the importing module’s symbol table. For example:

>>> from fibo import fib, £fib2

>>> fib (500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local
symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:
>>> from fibo import *

>>> £ib (500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

Ian D Chivers Chapter 23

272 Modules

This imports all names except those beginning with an underscore (_). In most cases Python
programmers do not use this facility since it introduces an unknown set of names into the
interpreter, possibly hiding some things you have already defined.

Note that in general the practice of importing * from a module or package is frowned upon,
since it often causes poorly readable code. However, it is okay to use it to save typing in in-
teractive sessions.

23.41 Note:

For efficiency reasons, each module is only imported once per interpreter session. There-
fore, if you change your modules, you must restart the interpreter — or, if it’s just one mod-
ule you want to test interactively, use imp.reload(), e.g. import imp; imp.re-
load(modulename).

23.5 Executing modules as scripts
When you run a Python module with
python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the name
setto " main_". That means that by adding this code at the end of your module:
if name == " main ":
import sys
fib(int (sys.argv[1l]))
you can make the file usable as a script as well as an importable module, because the code
that parses the command line only runs if the module is executed as the “main” file:
$ python fibo.py 50
1 1 2 3 5 8 13 21 34
If the module is imported, the code is not run:
>>> import fibo
>>>
This is often used either to provide a convenient user interface to a module, or for testing
purposes (running the module as a script executes a test suite).

23.6 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module
with that name. If not found, it then searches for a file named spam.py in a list of directo-
ries given by the variable sys.path. sys.path is initialized from these locations:
e The directory containing the input script (or the current directory when no file
is specified).
e PYTHONPATH (a list of directory names, with the same syntax as the shell
variable PATH).

e The installation-dependent default.

23.6.1 Note:

On file systems which support symlinks, the directory containing the input script is calcu-
lated after the symlink is followed. In other words the directory containing the symlink is
not added to the module search path.

After initialization, Python programs can modify sys.path. The directory containing the
script being run is placed at the beginning of the search path, ahead of the standard library
path. This means that scripts in that directory will be loaded instead of modules of the same

Chapter 23 Ian D Chivers

Modules 273

name in the library directory. This is an error unless the replacement is intended. See sec-
tion Standard Modules for more information.

23.7 “Compiled” Python files

To speed up loading modules, Python caches the compiled version of each module in the
__pycache directory under the name module.version.pyc, where the version encodes the
format of the compiled file; it generally contains the Python version number. For example,
in CPython release 3.3 the compiled version of spam.py would be cached as
__pycache /spam.cpython-33.pyc. This naming convention allows compiled modules from
different releases and different versions of Python to coexist.

Python checks the modification date of the source against the compiled version to see if it’s
out of date and needs to be recompiled. This is a completely automatic process. Also, the
compiled modules are platform-independent, so the same library can be shared among sys-
tems with different architectures.

Python does not check the cache in two circumstances. First, it always recompiles and does
not store the result for the module that’s loaded directly from the command line. Second, it
does not check the cache if there is no source module. To support a non-source (compiled
only) distribution, the compiled module must be in the source directory, and there must not
be a source module.

Some tips for experts:

e <You can use the -O or -OO switches on the Python command to reduce the size
of a compiled module. The -O switch removes assert statements, the -OO switch
removes both assert statements and _doc__ strings. Since some programs may
rely on having these available, you should only use this option if you know what
you’re doing. “Optimized” modules have an opt- tag and are usually smaller. Fu-
ture releases may change the effects of optimization.

e A program doesn’t run any faster when it is read from a .pyc file than when it
is read from a .py file; the only thing that’s faster about .pyc files is the speed
with which they are loaded.

e *The module compileall can create .pyc files for all modules in a directory.

e <There is more detail on this process, including a flow chart of the decisions, in
PEP 3147.

23.8 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Py-
thon Library Reference (“Library Reference” hereafter). Some modules are built into the in-
terpreter; these provide access to operations that are not part of the core of the language but
are nevertheless built in, either for efficiency or to provide access to operating system prim-
itives such as system calls. The set of such modules is a configuration option which also
depends on the underlying platform. For example, the winreg module is only provided on
Windows systems. One particular module deserves some attention: sys, which is built into
every Python interpreter. The variables sys.psl and sys.ps2 define the strings used as
primary and secondary prompts:

>>> import sys

>>> sys.psl

T>>> !

>>> sys.ps?2

Ian D Chivers Chapter 23

274 Modules

>>> sys.psl = 'C> '

C> print ('Yuck!")
Yuck!
c>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s search path for
modules. It is initialized to a default path taken from the environment variable
PYTHONPATH, or from a built-in default if PYTHONPATH is not set. You can modify it
using standard list operations:

>>> import Sys
>>> gys.path.append('/ufs/guido/lib/python')

23.9 The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a
sorted list of strings:

>>> import fibo, sys

>>> dir (fibo)

[' name ', 'fib', 'fib2']

>>> dir(sys)

[' displayhook ', ' doc ', ' excepthook ', ' loader ',
' name ‘',

' package ', ' stderr ', ' stdin ', ' stdout ',

' clear type cache', ' current frames', ' debugmallocstats',
' getframe',

' home', ' mercurial', ' xoptions', 'abiflags', 'apili ver-

sion', 'argv',

'base exec prefix', 'base prefix', 'builtin module names',
'byteorder’',

'call tracing', 'callstats', 'copyright', 'displayhook',

'dont write bytecode', 'exc info', 'excepthook', 'exec pre-
fix',

'executable', 'exit', 'flags', 'float info',
'float repr style',

'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',

'getfilesystemencoding', 'getobjects', 'getprofile',
'getrecursionlimit’',

'getrefcount', 'getsizeof', 'getswitchinterval',
'gettotalrefcount',

'gettrace', 'hash info', 'hexversion', 'implementation',
'int info',

'intern', 'maxsize', 'maxunicode', 'meta path', 'modules',
'path’,

'path hooks', 'path importer cache', 'platform', 'prefix',
'pS]-'r

'setcheckinterval', 'setdlopenflags', 'setprofile',
'setrecursionlimit’',

'setswitchinterval', 'settrace', 'stderr', 'stdin',
'stdout’,

Chapter 23 Ian D Chivers

Modules 275

'"thread info', 'version', 'version info', 'warnoptions']
Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir ()

['" Dbuiltins ', ' name ', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those,
they are defined in the standard module builtins:

>>> import builtins
>>> dir (builtins)
["ArithmeticError', 'AssertionError', 'AttributeError',
'BaseException',

'BlockingIOError', 'BrokenPipeError', 'BufferError',
'BytesWarning',

'ChildProcessError', 'ConnectionAbortedError',
'ConnectionError',

'ConnectionRefusedError', 'ConnectionResetError',
'DeprecationWarning’,

'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception',
'False',

'FileExistsError', 'FileNotFoundError', 'FloatingPointError',

'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',

'ImportWarning', 'IndentationError', 'IndexError',
'InterruptedError',

'IsADirectoryError', 'KeyError', 'KeyboardInterrupt',
'LookupError',

'MemoryError', 'NameError', 'None', 'NotADirectoryError',
'NotImplemented',

'NotImplementedError', 'OSError', 'OverflowError',

'PendingDeprecationWarning', 'PermissionError',
'ProcessLookupError’',

'ReferenceError', 'ResourceWarning', 'RuntimeError',
'RuntimeWarning',

'StopIteration', 'SyntaxError', 'SyntaxWarning',
'SystemError',

'SystemExit', 'TabError', 'TimeoutError', 'True',
'TypeError',

'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError’',

'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning',
'UserWarning',

'ValueError', 'Warning', 'ZeroDivisionError', ' '

4

' build class ',
' debug ', ' doc ', ' ‘dimport ', ' name ', ' pack-
age ', 'abs',

Ian D Chivers Chapter 23

276 Modules

'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes',
'callable',

'chr', 'classmethod', 'compile', 'complex', 'copyright',
'credits',

'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval',
'exec', 'exit',

'filter', 'float', 'format', 'frozenset', 'getattr',
'globals', 'hasattr',

'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance',
'issubclass',

'iter', 'len', 'license', 'list', 'locals', 'map', 'max',
'memoryview',

'min', 'next', 'object', 'oct', 'open', 'ord', 'pow',
'print', 'property',

'quit', 'range', 'repr', 'reversed', 'round', 'set',
'setattr', 'slice',

'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple',
'type', 'wvars',

lzipl]

23.10 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module
names”. For example, the module name A.B designates a submodule named B in a package
named A. Just like the use of modules saves the authors of different modules from having
to worry about each other’s global variable names, the use of dotted module names saves
the authors of multi-module packages like NumPy or the Python Imaging Library from hav-
ing to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling
of sound files and sound data. There are many different sound file formats (usually recog-
nized by their extension, for example: .wav, .aiff, .au), so you may need to create and main-
tain a growing collection of modules for the conversion between the various file formats.
There are also many different operations you might want to perform on sound data (such as
mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so
in addition you will be writing a never-ending stream of modules to perform these opera-
tions. Here’s a possible structure for your package (expressed in terms of a hierarchical

filesystem):
sound/ Top-level package
__init .py Initialize the sound
package
formats/ Subpackage for file for-

mat conversions
__init .py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Chapter 23 Ian D Chivers

Modules 277

effects/ Subpackage for sound ef-
fects
__init .py
echo.py
surround.py
reverse.py

filters/ Subpackage for filters
__init .py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directories on sys.path looking
for the package subdirectory.

The init .py files are required to make Python treat the directories as containing pack-
ages; this is done to prevent directories with a common name, such as string, from uninten-
tionally hiding valid modules that occur later on the module search path. In the simplest
case, init__.py can just be an empty file, but it can also execute initialization code for the
package or set the all variable, described later.

Users of the package can import individual modules from the package, for example:
import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it
can be used as follows:

echo.echofilter (input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly avail-
able:

echofilter (input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or
subpackage) of the package, or some other name defined in the package, like a function,
class or variable. The import statement first tests whether the item is defined in the pack-
age; if not, it assumes it is a module and attempts to load it. If it fails to find it, an
ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the
last must be a package; the last item can be a module or a package but can’t be a class or
function or variable defined in the previous item.

23.11 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would
hope that this somehow goes out to the filesystem, finds which submodules are present in

Ian D Chivers Chapter 23

278 Modules

the package, and imports them all. This could take a long time and importing sub-modules
might have unwanted side-effects that should only happen when the sub-module is explic-
itly imported.

The only solution is for the package author to provide an explicit index of the package. The
import statement uses the following convention: if a package’s init .py code defines a
list named __all , it is taken to be the list of module names that should be imported when
from package import * is encountered. It is up to the package author to keep this list
up-to-date when a new version of the package is released. Package authors may also decide
not to support it, if they don’t see a use for importing * from their package. For example,
the file sound/effects/ init .py could contain the following code:

all = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three named
submodules of the sound package.

If all is not defined, the statement from sound.effects import * does not import all
submodules from the package sound.effects into the current namespace; it only ensures that
the package sound.effects has been imported (possibly running any initialization code in
__init__.py) and then imports whatever names are defined in the package. This includes any
names defined (and submodules explicitly loaded) by init .py. It also includes any
submodules of the package that were explicitly loaded by previous import statements.
Consider this code:

import sound.effects.echo

import sound.effects.surround

from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace be-
cause they are defined in the sound.effects package when the from...import statement is exe-
cuted. (This also works when _all _ is defined.)

Although certain modules are designed to export only names that follow certain patterns
when you use import *, it is still considered bad practise in production code.

Remember, there is nothing wrong with using from Package import specific_submodule! In
fact, this is the recommended notation unless the importing module needs to use
submodules with the same name from different packages.

23.12 Intra-package References

When packages are structured into subpackages (as with the sound package in the exam-
ple), you can use absolute imports to refer to submodules of siblings packages. For exam-
ple, if the module sound.filters.vocoder needs to use the echo module in the sound.effects
package, it can use from sound.effects import echo.

You can also write relative imports, with the from module import name form of import
statement. These imports use leading dots to indicate the current and parent packages in-
volved in the relative import. From the surround module for example, you might use:

from . import echo

from .. import formats

from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of
the main module is always " main_ ", modules intended for use as the main module of a
Python application must always use absolute imports.

Chapter 23 Ian D Chivers

Modules 279

23.13 Packages in Multiple Directories

Packages support one more special attribute, path . This is initialized to be a list con-
taining the name of the directory holding the package’s init .py before the code in that
file is executed. This variable can be modified; doing so affects future searches for modules
and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in
a package.

Footnotes

[1] In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a
module-level function definition enters the function name in the module’s global symbol
table.

23.14 Summary

This chapter briefly introduces some of the concepts involved in using modules in Python.

23.15 Problems

1. Compile and run the examples in this chapter.

Ian D Chivers Chapter 23

280

SciPy and Pandas

24 SciPy and Pandas

241 Introduction
The SciPy site is
http://www.scipy.orqg/

and the following information is taken from that site.

SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source software for
mathematics, science, and engineering. In particular, these are some of the core packages:

NumPy Base N-dimensional array package

SciPy library Fundamental library for scientific computing
Matplotlib Comprehensive 2D Plotting

[Python Enhanced Interactive Console

Sympy Symbolic mathematics

pandas Data structures & analysis

We covered Numpy in an earlier chapter and cover matplotlib in a later chapter. In this
chapter we will have a look at a small number of Pandas examples, processing the Met Of-
fice station data.

Here is some additional information taken from the scipy site.

24.2 Documentation

Documentation is also available.

http://docs.scipy.org/doc/scipy/reference/
24.3 Tutorials

A tutorial is available covering the following subjects.

Chapter 24

Introduction

Basic functions

Special functions (scipy.special)

Integration (scipy.integrate)

Optimization (scipy.optimize)

Interpolation (scipy.interpolate)

Fourier Transforms (scipy.fftpack)

Signal Processing (scipy.signal)

Linear Algebra (scipy.linalg)

Sparse Eigenvalue Problems with ARPACK
Compressed Sparse Graph Routines (scipy.sparse.csgraph)
Spatial data structures and algorithms (scipy.spatial)
Statistics (scipy.stats)

Multidimensional image processing (scipy.ndimage)
File 10 (scipy.io)

Weave (scipy.weave)

Ian D Chivers

SciPy and Pandas 281

24.4 Reference material

Reference material is also available. Here are some of the areas.

Clustering package (scipy.cluster)

Constants (scipy.constants)

Discrete Fourier transforms (scipy.fftpack)

Integration and ODEs (scipy.integrate)

Interpolation (scipy.interpolate)

Input and output (scipy.io)

Linear algebra (scipy.linalg)

Miscellaneous routines (scipy.misc)

Multi-dimensional image processing (scipy.ndimage)
Orthogonal distance regression (scipy.odr)

Optimization and root finding (scipy.optimize)

Signal processing (scipy.signal)

Sparse matrices (scipy.sparse)

Sparse linear algebra (scipy.sparse.linalg)

Compressed Sparse Graph Routines (scipy.sparse.csgraph)
Spatial algorithms and data structures (scipy.spatial)
Special functions (scipy.special)

Statistical functions (scipy.stats)

Statistical functions for masked arrays (scipy.stats.mstats)

C/C++ integration (scipy.weave)

24.5 Pandas

In this section we look at Pandas. Here is the Wikipedia entry.

https://en.wikipedia.org/wiki/Pandas (software)

Here are some extracts from that site.

In computer programming, pandas is a software library written for the Python
programming language for data manipulation and analysis. In particular, it offers
data structures and operations for manipulating numerical tables and time series.
It is free software released under the three-clause BSD license. The name is de-
rived from the term "panel data", an econometrics term for data sets that include
observations over multiple time periods for the same individuals.

Library features

e DataFrame object for data manipulation with integrated in-
dexing.

e Tools for reading and writing data between in-memory
data structures and different file formats.

e Data alignment and integrated handling of missing data.

e Reshaping and pivoting of data sets.

Ian D Chivers Chapter 24

282

The library is highly optimized for performance, with critical code paths written

SciPy and Pandas

Label-based slicing, fancy indexing, and subsetting of
large data sets.

Data structure column insertion and deletion.

Group by engine allowing split-apply-combine operations
on data sets.

Data set merging and joining.

Hierarchical axis indexing to work with high-dimensional
data in a lower-dimensional data structure.

Time series-functionality: Date range generation[4] and
frequency conversion, moving window statistics, moving
window linear regressions, date shifting and lagging.

Provides data filtration.

in Cython or C.

Here is the main Pandas site.

https://pandas.pydata.org

Here are some extracts from that site.

In this chapter we will look at processing the Met Office data using Pandas. We will be us-

pandas is an open source, BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools for the Python programming

language.

pandas is a NumFOCUS sponsored project. This will help ensure the success of
development of pandas as a world-class open-source project, and makes it possi-

ble to donate to the project.

What problem does pandas solve?

Python has long been great for data munging and prepara-
tion, but less so for data analysis and modeling. pandas
helps fill this gap, enabling you to carry out your entire
data analysis workflow in Python without having to switch
to a more domain specific language like R.

Combined with the excellent IPython toolkit and other li-
braries, the environment for doing data analysis in Python
excels in performance, productivity, and the ability to col-
laborate.

pandas does not implement significant modeling function-
ality outside of linear and panel regression; for this, look
to statsmodels and scikit-learn. More work is still needed
to make Python a first class statistical modeling environ-
ment, but we are well on our way toward that goal

ing the Cwmystwyth data throughout the examples.

Chapter 24

Ian D Chivers

SciPy and Pandas 283

2451 Example 1 - Basic Pandas syntax

The first example just looks at creating a Pandas DataFrame from the Cwmystwyth data,
and showing some simple examples of Pandas functionality. Here is the source.

import numpy as np

import pandas as pd

import math

data file name="cwmystwythdata.txt"

month names = ["January","Febru-

ary","March", "April", "May", "June", "July", "August", "Septem-

ber", "October", "November", "December"]

matrix = np.genfromtxt(data file name, \
skip header=7 , \
skip footer=1 , \
usecols=(0,1,2,3,4,5,6), \
autostrip=True , \

dtype=(int, int, float, float, int, float, float), \

missing values={"---"}\
)
n=matrix.size
print (n)
print (type (matrix))
dataframe 1 = pd.DataFrame (matrix)

print (dataframe 1.columns)

print (dataframe 1.index)

print (dataframe 1['fl'])

print (dataframe 1.ix[[0,1]])

print (dataframe 1.sort index (axis=1))
print (dataframe 1.sort index(by='£f5"))

We create the data frame using the matrix created by genfromtxt, which we used in an ear-
lier example.

Here is some sample output. We have deleted repetitive sections of the output.

618

<class 'numpy.ndarray'>

Index(['fO', 'f1', 'f£2', '£3', 'f4', 'f5', 'fe6'], dtype='ob-
ject!')

RangeIndex (start=0, stop=618, step=1)

0 1
1 2
2 3
608 6
609 7
610 8
611 9
612 10
613 11

Ian D Chivers Chapter 24

284 SciPy and Pandas

614 12
615 1
616 2
617 3
Name: fl, Length: 618, dtype: int32
fo f1 2 f3 f4 £5 f6
0 1959 1 4.5 -1.9 20 NaN 57.2

1 1959 2 7.3 0.9 15 NaN 87.2

f0 f1 f2 £3 f4 £5 fo
0 1959 1 4.5 -1.9 20 NaN 57.2
1 1959 2 7.3 0.9 15 NaN 87.2
2 1959 3 8.4 3.1 3 NaN 81.6
3 1959 4 10.8 3.7 1 NaN 107.4
613 2010 11 7.1 0.5 11 154.9 73.3
614 2010 12 3.1 -3.7 23 82.6 52.4
615 2011 1 5.8 -0.3 16 191.4 44 .7
olo 2011 2 8.3 3.1 5 165.8 43.5
617 2011 3 10.3 1.4 12 35.5 145.0
[618 rows x 7 columns]

f0 f1 f2 £3 f4 £5 fo
447 1997 1 5.1 -0.7 19 8.2 NaN
202 1976 8 21.5 9.7 0 9.3 260.2
316 1986 2 -0.1 -4.9 26 9.6 116.5
570 2007 4 15.8 4.4 3 18.8 232.5
294 1984 4 11.9 2.4 11 19.1 201.7
493 2000 11 8.2 3.5 1 424 .4 15.2
601 2009 11 9.4 4.9 0 425.4 34.0
18 1960 7 16.0 9.3 0 NaN 111.3
19 1960 8 16.5 9.4 0 NaN 119.2
20 1960 9 15.0 7.9 0 NaN 120.3
21 1960 10 12.0 5.3 5 NaN NaN
22 1960 11 8.8 2.9 5 NaN 37.3
23 1960 12 5.9 0.4 13 NaN 33.9
314 1985 12 NaN NaN -1 NaN NaN
410 1993 12 7.1 1.9 8 NaN 12.4
445 1996 11 NaN NaN -1 NaN NaN
446 1996 12 NaN NaN -1 NaN NaN

[618 rows x 7 columns]

24.5.2 Example 2 - Calculating overall averages
In this example we calculate the overall monthly rainfall average for the site.

import numpy as np
import pandas as pd

Chapter 24 Ian D Chivers

SciPy and Pandas 285

import math

data file name="cwmystwythdata.txt"

month names = ["January","Febru-

ary","March", "April", "May", "June", "July", "August", "Septem-

ber", "October", "November", "December"]

matrix = np.genfromtxt(data file name, \
skip header=7 , \
skip footer=1 , \
usecols=(0,1,2,3,4,5,6), \
autostrip=True , \

dtype= (int, int, float, float, int, float, float), \

missing values={"---"}\
)
n=matrix.size
print (n)
print (type (matrix))
dataframe 1 = pd.DataFrame (matrix)

print (dataframe 1.columns)

print (dataframe 1.index)

print (" Average monthly rainfall = {:6.2f} mm".for-
mat (dataframe 1['f5'].mean()))

Here is the output.

618
<class 'numpy.ndarray'>
Index (['£0', '£1', 'f2', '£3', 'f4', '£5', 'f6'], dtype='ob-
ject!')
RangeIndex (start=0, stop=618, step=1)
Average monthly rainfall = 149.43 mm

24.5.3 Example 3 - Calculating minimum and maximum values

This one calculates the minimum and maximum values.

import numpy as np

import pandas as pd

import math

data file name="cwmystwythdata.txt"

month names = ["January","Febru-

ary","March", "April", "May", "June", "July", "August", "Septem-

ber", "October", "November", "December"]

matrix = np.genfromtxt(data file name, \
skip header=7 , \
skip footer=1 , \
usecols=(0,1,2,3,4,5,6), \
autostrip=True , \

dtype=(int, int, float, float, int, float, float), \
missing values={"---"}\

Ian D Chivers Chapter 24

286 SciPy and Pandas

n=matrix.size

print (n)
print (type (matrix))
dataframe 1 = pd.DataFrame (matrix)

print (dataframe 1.columns)
print (dataframe 1.index)

print (" Minimum monthly rainfall =
mat (dataframe 1['f£5'].min()))
print (" Maximum monthly rainfall =

mat (dataframe 1['f5'].max()))
Here is the output.

618
<class 'numpy.ndarray'>

Index(['fO', 'f1', 'f2', '£3', 'f4', 'f5',

ject!')

RangeIndex (start=0, stop=618, step=1)
Minimum monthly rainfall = 8.20 mm
Maximum monthly rainfall = 425.40 mm

2454 Example 4 - Using the groupby method
This example uses the groupby method.
Here is the source.

import numpy as np

import pandas as pd

import math

data file name="cwmystwythdata.txt"
month names = ["January","Febru-

"fe'],

{:6.2f} mm".for-

{:6.2f} mm".for-

dtype="'ob-

ary","March", "April", "May", "June", "July", "August", "Septem-

ber", "October", "November", "December"]
matrix = np.genfromtxt(data file name,

skip header=7
skip footer=1

14 \
\

14

usecols=(0,1,2,3,4,5,6), \

autostrip=True

dtype=(int, int, float, float, int, float, float),

14 \

\

missing values={"---"}\

n=matrix.size

print (n)
print (type (matrix))
dataframe 1 = pd.DataFrame (matrix)

print (dataframe 1.groupby('fl').mean())
dataframe 2 = dataframe 1[['fl',6 "£5']]
print (dataframe 2)

print (" Average monthly rainfall in mm")

print (dataframe 2.groupby('fl') .mean/()

Here is the program output.

Chapter 24 Ian D Chivers

SciPy and Pandas

618

<class 'numpy.ndarray'>
f0

£5 hill

fl

1 1985.882353
32.502041
2 1985.882353
56.218000
3 1985.442308

5.

6.

8.

902128

129167

000000

139.906000 83.558000

4 1984.941176
129.322449
5 1984.500000
161.125490
6 1984.500000
148.166667
7 1984.500000
142 .354167
8 1984.500000
138.422449
9 1984.500000
109.264583
10 1984.960784
83.142553
11 1984.960784
46.360870
12 1984.960784
30.087234

f1 f5
0 1 NaN
1 2 NaN
2 3 NaN
3 4 NaN
4 5 NaN
5 6 NaN
6 7 NaN
7 8 NaN
8 9 NaN
9 10 NaN
10 11 NaN
11 12 NaN
12 1 NaN
13 2 NaN
14 3 NaN
15 4 NaN
16 5 NaN
17 0 NaN

10.

13.

16.

528000

920833

195652

.655102

.806250

.675510

.477551

.730612

.637500

£2

0.852000

0.586000

1.640000

2.850980

5.521569

8.130000

10.084000

10.096000

8.146000

6.191837

3.178000

1.338776

Ian D Chivers

£3

11.

11.

-0.

-0.

10

647059

862745

.211538

.274510

.942308

.153846

038462

038462

.269231

.843137

.117647

.215686

287

4

186

134

1009.

104.

107

124.

137.

150.

189.

205.

210.

.553061

.089796

428571
872000
.348000
834000
436000
972000
161224
414583

752174

Chapter 24

288 SciPy and Pandas

18 7 NaN
19 8 NaN
20 9 NaN
21 10 NaN
22 11 NaN
23 12 NaN
24 1 144.8
25 2 112.5
26 3 77.2
27 4 130.7
28 5 66.3
29 6 66.1
588 10 317.6
589 11 237.3
590 12 140.1
591 1 167.1
592 2 35.1
593 3 110.8
594 4 78.6
595 5 126.1
596 6 99.9
597 7 219.9
598 8 140.7
599 9 86.3
600 10 126.6
601 11 425.4
602 12 167.7
603 1 127.9
604 2 70.4
605 3 102.0
606 4 56.8
607 5 71.5
608 6 80.5
609 7 209.3
610 8 88.8
0ll 9 181.2
612 10 108.0
613 11 154.9
614 12 82.6
615 1 191.4
616 2 165.8

617 3 35.5

[618 rows x 2 columns]
Average monthly rainfall in mm
f5
f1
1 186.553061

Chapter 24 Ian D Chivers

SciPy and Pandas 289

134.089796
139.906000
109.428571
104.872000
107.348000
124.834000
137.436000
9 150.972000
10 189.161224
11 205.414583
12 210.752174

O ~J o U1 b W N

The first groupy output has calculated avearges for the years!

24.6 Summary

We have just shown part of what is possible with Pandas. Our interest was in in showing
some of the ways you could process the Met Offce data. A lot of help is available on line.

Happy searching.
24.7 Problems

Run the examples in this chapter.
Modify the examples to work with a Met Office station of your choice.

Ian D Chivers Chapter 24

290 Windows programming in Python

25 Windows programming in Python

25.1 Introduction to Windows programming

The following information is taken from the Python FAQ. These are some of the plat-
form-independent GUI toolkits for Python

e Tkinter
o wxWidgets

e Qt

e Gtk+

e FLTK

e FOX

e OpenGL
In these notes we will be using Tkinter.
25.2 Tkinter

Standard builds of Python include an object-oriented interface to the Tcl/Tk widget set,
called Tkinter. This is available on both the Linux and Windows systems I use. They are
dual boot Windows 10 and openSuSe 13.1.

For more info about Tk, including pointers to the source, see the Tcl/Tk home page at
http://www.tcl.tk.

Tcl/Tk is fully portable to the Mac OS X, Windows, and Unix platforms.

The web site below

https://wiki.python.org/moin/TkInter

is where the following information was taken.

e Tkinter is Python's de-facto standard GUI (Graphical User Interface) package. It
is a thin object-oriented layer on top of Tcl/Tk.

e Tkinter is not the only Gui Programming toolkit for Python. It is however the
most commonly used one. Cameron Laird calls the yearly decision to keep
Tkinter "one of the minor traditions of the Python world."

There is a Tkinter wiki:

http://tkinter.unpythonic.net/wiki/

which is a good read ;-)

We will start by having a look at a few simple programs.

25.3 Example 1 - simple test program included with Tkinter distribu-
tion

Here is the possibly the simplest example. This just tests out the installation.

python3

>>import tkinter
>>tkinter. test()

This pops up a small window with the following text

This is Tcl/Tk version 8.5
This should be a cedilla

Chapter 25 Ian D Chivers

Windows programming in Python 291

[Click me]
[QUIT]

This is the simplest example you can think of, only two lines of code! You can try this out
from the command line.

X O X

This is TclfTk version 8.5
This should be a cedilla: ¢

Click me!
QquiT

The output above is taken from a Windows 10 system. In this example we use
import tkinter
which is one of the ways that Python has for importing a module. In most graphics exam-

ples on the web you will see a variety of import statements. Here is a brief explanation of
the various forms

e import foobah - import the module foobah and create a reference to that module
in the current namespace. This enables you to use foobah.name to refer to things
defined in the foobah module;

e from foobah import * - imports the module foobah, and creates references in the
current namespace to all public objects defined by that module (that is, every-
thing that doesn’t have a name starting with “). After you’ve run this state-
ment, you can simply use a plain name to refer to things defined in module
foobah. foobah itself is not defined, so foobah.name doesn’t work;

e from foobah import a,b,c - import the module foobah and create references in the
current namespace to the specific objects, i.e. you can use a, b and ¢ in your pro-
gram;

e foobah = import ('foobah') works like import foobah with the difference that
first you pass the module name as a string, and second explicitly assign it to a
variable in your current namespace;
The Python recommendation is to use import. However they make an exception for Tkinter,
where the recommendation is to use from ... import. Tkinter is designed to add only the
widget classes and related constants to your current namespace. Using the import Tkinter
makes you program slightly harder to read. Let us have a look now at a simple variant.

25.4 Example 2 - Hello world version 1

This is the simple hello world example. The hello world example goes back to C and
Kernighan and Ritchie.
from tkinter import *

root = Tk()

w = Label (root, text="Hello world")
w.pack ()

Ian D Chivers Chapter 25

292 Windows programming in Python

root.mainloop ()

The output is similar to the test example. We have a Window with the typical gui layout.
Here is a screen shot of this program.

-X O X

Hello world

The output is from a Windows 10 system. Let us look at the code in more depth.

You start by importing the Tkinter module. It contains all classes, functions and other things
needed to work with the Tk toolkit. The following is a Python 3 version.

from tkinter import *

To initialize Tkinter, we have to create a Tk root widget. This is a window with a small
number of gui components, provided by your window manager. Here is the code.

root = Tk{()

We are going to use a Label widget to display hello world.

w = Label (root, text="Hello world")

w.pack ()

Label widgets can display text, graphics or icons. In this example we use the text option.

The pack method tells the widget it to size itself to fit the given text, and make itself visi-
ble. The window appears when we’ve entered the Tkinter event loop:

root.mainloop ()

The program will stay in the event loop until we close the window. The event loop doesn’t
only handle events from the user (such as mouse clicks and key presses) or the windowing
system (such as redraw events and window configuration messages), it also handle opera-
tions queued by Tkinter itself. Among these operations are geometry management (queued
by the pack method) and display updates. This also means that the application window will
not appear before you enter the main loop.

There are two variants. They use
e import tkinter
e import tkinter as tk
respectively.

25.5 Example 3 - Hello world variant 1
Here is the first variant.

import tkinter
root = tkinter.Tk()

w = tkinter.Label (root, text="Hello world")
w.pack ()

root.mainloop ()

Chapter 25 Ian D Chivers

Windows programming in Python 293

In this example we prefix the components with tkinter.

25.6 Example 4 - Hello world variant 2
Here is the second variant.

import tkinter as tk
root = tk.Tk()

w = tk.Label (root, text="Hello world")
w.pack ()

root.mainloop ()
Using the as option reduces the amount of typing.
25.7 Example 5 - Hello world version 2

Here is the source code for this example. It was taken from

http://infohost.nmt.edu/tcc/help/pubs/tkinter/
web/minimal-app.html

It only contains a [QUIT] button.

import tkinter as tk

class Application(tk.Frame) :

def init (self, master=None):
tk.Frame. 1init (self, master)
self.grid()

self.createWidgets ()

def createWidgets (self):
self.quitButton = tk.Button(self, text='Quit',
command=self.quit)
self.quitButton.grid()

app = Application()
app.master.title('Sample application')
app.mainloop ()

Run the program and look at the output. You will see something similar to the screen shot
below.

-X O X
Quit

Let is look at the code in a bit more depth.

import tkinter as tk

Import tkinter and make it available using the short name tk.
class Application(tk.Frame) :

Inherit from the Frame class.

Ian D Chivers Chapter 25

294 Windows programming in Python

tk.Frame. 1init (self, master)
Call the constructor.
self.grid()

The grid method displays a widget on your application screen. In fact it registers the widget
with the grid geometry manager.
def createWidgets (self):
self.quitButton = tk.Button(self, text='Quit',

command=self.quit)

Creates a [Quit] button.

self.quitButton.grid/()
Places the button on the frame.
app = Application()
Instantiate the Application class.
app.master.title('Sample application')
Set the title to 'Sample Application'
app.mainloop ()
Starts the program.

25.8 Example 6 - Hello world version 3

Here is the source code for the third hello world program.
from tkinter import *
class App:

def init (self, master):

frame = Frame (master)
frame.pack ()

self.button = Button (frame, text="QUIT",
fg="red", command=frame.quit)

self.button.pack(side=LEFT)

self.hi there = Button(frame, text="Press me",
command=self.say hi)

self.hi there.pack (side=LEFT)

def say hi(self):
print ("Hello world")

root = Tk{()
app = App (root)

root.mainloop ()
root.destroy () # optional; see description below

Chapter 25 Ian D Chivers

Windows programming in Python 295

This application is written as a class. The constructor (the init method) is called with a
parent widget (the master), to which it adds a number of child widgets. The constructor
starts by creating a Frame widget. A frame is a simple container, and is in this case only
used to hold the other two widgets.

class App:
def init (self, master):
frame = Frame (master)
frame.pack ()

The frame instance is stored in a local variable called frame. After creating the widget, we
immediately call the pack method to make the frame visible. We then create two Button
widgets, as children to the frame.

self.button = Button(frame, text="QUIT", fg="red",
command=frame.quit)
self.button.pack(side=LEFT)

self.hi there = Button (frame, text="Press me",
command=self.say hi)
self.hi there.pack(side=LEFT)

This time, we pass a number of options to the constructor, as keyword arguments. The first
button is labelled “QUIT”, and is made red (fg is short for foreground). The second is la-
belled “Hello”. Both buttons also take a command option. This option specifies a function,
or (as in this case) a bound method, which will be called when the button is clicked.

The button instances are stored in instance attributes. They are both packed, but this time
with the side=LEFT argument. This means that they will be placed as far left as possible in
the frame; the first button is placed at the frame’s left edge, and the second is placed just to
the right of the first one (at the left edge of the remaining space in the frame, that is). By
default, widgets are packed relative to their parent (which is master for the frame widget,
and the frame itself for the buttons). If the side is not given, it defaults to TOP.

The “hello” button callback is given next. It simply prints a message to the console every
time the button is pressed:

def say hi(self):
print "Hello world"

In computer programming, a callback is a piece of executable code that is passed as an ar-
gument to other code, which is expected to call back (execute) the argument at some conve-
nient time. Programming languages support callbacks in different ways, often implementing
them with subroutines, lambda expressions, blocks, or function pointers. Python allows a
function object to be passed. Events and event handlers, as used in .NET languages, provide
generalized syntax for callbacks.

Finally, we provide some script level code that creates a Tk root widget, and one instance
of the App class using the root widget as its parent:

root = Tk{()

app = App (root)

root.mainloop ()
root.destroy ()

Ian D Chivers Chapter 25

296 Windows programming in Python

The mainloop call enters the Tk event loop, in which the application will stay until the quit
method is called (just click the QUIT button), or the window is closed.

25.9 The remaining examples

The rest of the examples are based on information from the following site.
http://effbot.org/tkinterbook/tkinter-index.htm#introduction
We will be looking at examples using the following widgets:

e Button

e A button can contain text or images. A function or call-
back can be associated with the button. When the button is
pressed the function is invoked.

e Entry

e The entry widget is used to enter text strings. This widget
is restricted to one line. The text widget works with multi-
ple lines. A get method is used to retrieve the text typed
in.

e Label

e Displays text or an image on the screen. The text may
span multiple lines.

e Message

e Display a text. Similar to the label widget, but can auto-
matically wrap text to a given width or aspect ratio.

o Text

e Formatted text display. Allows you to display and edit text
with various styles and attributes. Also supports embedded
images and windows.

A callback is executable code. It is passed as an argument to other code. Callbacks are com-
monly used in windowing systems, where there is a requirement to respond to events, e.g.
mouse clicks or button presses.

We will look at simple examples of each of them.

25.10 Example 7 - simple button example
Here is the source code.

converted to python3

Tkinter -> tkinter
print -> print ()

from tkinter import *
master = Tk{()

def bl():
print ("Button 1 pressed")

Chapter 25 Ian D Chivers

Windows programming in Python 297

def b2():
print ("Button 2 pressed")

bl = Button(master, text="Press button 1", command=bl)
b2 = Button(master, text="Press button 2", command=b2)
bl.pack ()
b2 .pack ()
mainloop ()

Here is the output from a Windows 10 system.

X O X

Press button 1 |

Press button 2 |

Pressing the buttons causes print statements in the command window.

First we define two methods to carry out the action we want when the buttons are pressed.
In Windows or GUI programming we link the press of a button to a handler or method. The
name for this method is a callback in general computing terminology.

The next thing we do is create two buttons, bl and b2, using the Button constructor.
We next apply the pack() method to make the buttons visible.

Finally we start the program.

Here is sample output from the command window.

$ python3 button 0l.py
Button 1 pressed

Button 1 pressed
Button 2 pressed
Button 2 pressed
See

http://effbot.org/tkinterbook/button.htm
for more detailed coverage of buttons.

25.11 Example 8 - Button and message example
Here is the source code.

converted to python3

Tkinter -> tkinter
print -> print ()

Ian D Chivers Chapter 25

298 Windows programming in Python

from tkinter import *
master = Tk{()

def bl{():
ml = Message (master, text="Button 1 pressed")
ml.pack ()

def b2 ():
m2 = Message (master,text="Button 2 pressed")
m2.pack ()

bl = Button(master, text="Press button 1", command=bl)
b2 = Button(master, text="Press button 2", command=b2)

bl.pack ()
b2.pack ()

mainloop ()

This is a simple variant of the first button example, where we have replaced the print()
statements with display messages.

Press button 1 |

Press button 2 |

Button 1
pressed

Button 1
pressed

Button 2
pressed

Button 2

The sample output is from a Windows 10 system.

See
http://effbot.org/tkinterbook/message.htm
for more detailed coverage of messages.

25.12 Example 9 - Button, message and entry example

In this example we get user input and then press one of two buttons to do a calculation and
display the results. Here is the source.

converted to python3

Tkinter -> tkinter
print -> print ()

Chapter 25 Ian D Chivers

Windows programming in Python 299

from tkinter import *
master = Tk{()

e = Entry(master,width=25)
e.pack ()

e.focus_set ()

def square() :

i=int (e.get ())

j=(i*1)

k=IntVar ()

k.set (j)

ml = Message (master, text=" Number squared is
", textvariable=k)

ml.pack ()

def cube() :

i=int (e.get ())

3= (1 * i * 1)

k=IntVar ()

k.set (j)

m2 = Message (master, text=" Number cubed is ",
textvariable=k)

m2.pack ()

square = Button (master, text=" Type in the number to be
squared", command=square)
cube = Button (master, text=" Type in the number to be

cubed ", command=cube)

square.pack ()
cube.pack ()

mainloop ()

Ian D Chivers Chapter 25

300 Windows programming in Python
Here is a screenshot of this example.

X tk
1l

Type in the number to be squared |

Type in the number to be cubed |

25
125

This is from a Windows 10 system.

See
http://effbot.org/tkinterbook/entry.htm
for more detailed coverage of the entry widget.

25.13 Example 10 - Button, entry and text widget example

In this example we replace the message widgets with a text widget. Here is the source code.

converted to python3

Tkinter -> tkinter
print -> print ()

from tkinter import *
master = Tk{()

text entry

e = Entry(master,width=25)
e.pack ()

e.focus set()

Text widget

T = Text (master,height=10,width=30)
T.pack ()

def square() :
i=int (e.get ())
j=(1*1)
j string = str(j)

Chapter 25 Ian D Chivers

T.

T.
T.
T.

def

Windows programming in Python

insert (END," Number squared is ")
insert (END,J string)

insert (END, "\n")

pack ()

cube () :

i=int (e.get())

J

= (i * i * i)

J _string = str(Jj)

T.
T.
T.
T.

insert (END," Number cubed is ")
insert (END,J string)

insert (END, "\n")

pack ()

301

square = Button (master, text=" Type 1in the number to be
squared", command=square)
= Button (master, text=" Type 1in the number to be
cubed ", command=cube)

cube

square.pack ()

cube

.pack ()

mainloop ()

Here is sample output.

See

Number squared is 144
Number cubed is 1728

Type in the number to be squared

e sl

Type in the number to be cubed

http://effbot.org/tkinterbook/text.htm
for more detailed coverage of the text widget.

25.14 Tkinter on line examples and resources
I have used and reworked examples from a variety of sources including

e John Shipmans site. Visit

Ian D Chivers

Chapter 25

302

http:

http:

http:

25.15

Windows programming in Python

//infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

this is the home page. There is also a 168 page Tkinter 8.5 reference manual
there. We downloaded and used the pdf version.

e the Thinking in Tkinter site.
//thinkingtkinter.sourceforge.net/
This site has some simple examples.

e The Introduction to Tkinter site.
//effbot.org/tkinterbook/

The explanation on this site is very good.

Other options

There are other options in this area and we provide some additional information below.

25.15.1
The fol

The fol

Details
https

QT Creator
lowing is taken from the wikipedia entry.
Qt Creator is a cross-platform C++, JavaScript and QML integrated development en-
vironment which is part of the SDK for the Qt GUI application development frame-
work.
It includes a visual debugger and an integrated GUI layout and forms designer.
The editor's features include syntax highlighting and autocompletion.

Qt Creator uses the C++ compiler from the GNU Compiler Collection on Linux and
FreeBSD.

On Windows it can use MinGW or MSVC with the default install and can also use
Microsoft Console Debugger when compiled from source code.

Clang is also supported.
lowing is taken from the Qt Designer Manual

Qt Designer is the Qt tool for designing and building graphical user interfaces
(GUIs) with Qt Widgets. You can compose and customize your windows or dialogs
in a what-you-see-is-what-you-get (WYSIWYG) manner, and test them using differ-
ent styles and resolutions.

Widgets and forms created with Qt Designer integrate seamlessly with programmed
code, using Qt's signals and slots mechanism, so that you can easily assign behavior
to graphical elements. All properties set in Qt Designer can be changed dynamically
within the code. Furthermore, features like widget promotion and custom plugins al-
low you to use your own components with Qt Designer.

Note: You have the option of using Qt Quick for user interface design rather than
widgets. It is a much easier way to write many kinds of applications. It enables a
completely customizable appearance, touch-reactive elements, and smooth animated
transitions, backed up by the power of OpenGL graphics acceleration.

If you are new to Qt Designer, you can take a look at the Getting To Know Qt De-
signer document. For a quick tutorial on how to use Qt Designer, refer to A Quick
Start to Qt Designer.

of pricing can be found at

://wwwl.qgt.io/buy-product/

Chapter 25 Ian D Chivers

Windows programming in Python 303
25.16 Problems

1. Compile and run the examples in this chapter.

2. Rewrite some of the eariler examples to have a gui interface.

Ian D Chivers Chapter 25

304

Graphics plotting in Python using matplotlib

26 Graphics plotting in Python using

mat

plotlib

26.1 Graphics plotting with matplotlib

In this chapter we will look at a small number of examples of plotting graphs using

matplotlib.

Their site is given below.

http://matplotlib.org/

Hereisab

it of blurb from the above site.

matplotlib is a python 2D plotting library which produces publication quality
figures in a variety of hard copy formats and interactive environments across
platforms. matplotlib can be used in python scripts, the python and ipython shell
(ala MATLAB or Mathematica), web application servers, and six graphical user
interface toolkits.

matplotlib tries to make easy things easy and hard things possible. You can gen-
erate plots, histograms, power spectra, bar charts, error charts, , etc, with just a
few lines of code. For a sampling, see the screenshots, thumbnail gallery, and
examples directory

For simple plotting the pyplot interface provides a MATLAB-like interface, par-
ticularly when combined with IPython. For the power user, you have full control
of line styles, font properties, axes properties, etc, via an object oriented inter-
face or via a set of functions familiar to MATLAB users.

Examples are available.

http://matplotlib.org/examples/index.html

and with most plotting libraries choosing an example that does part of what you want is
normally an effective way to start.

Here is a list of their example headings.

Chapter 26

animation scatter plots
api

axes_grid

color

event handling
images_contours_and fields
lines_bars and markers
misc

mplot3d

pie_and polar charts
pylab_

scales

shapes_and collections ce

showcase

Ian D Chivers

Graphics plotting in Python using matplotlib 305

specialty plots

statistics

style sheets
subplots axes and_figures
tests b

text_labels_and annotations
ticks and_spines

units

user_interfaces

widgets

On a Windows system with the most recent version of cygwin the following worked

cygwin install
conda install matplotlib
jupyter qtconsole
e from pylab import *
e plot([1,2,3,4])

e show()

and this produced a sample plot.

26.2 The jupyter gtconsole on Windows

Here is a screenshot of the jupyter qtconsole on a Windows 10 system running a cygwin in-
stall from January 2016.

Jupyter QtConsole 4.1.0

Python 3.5.1 |Anaconda 2.4.8 (64-bit)| (default, Dec 7 2815, 15:808:12)
v.1908 64 bit (AMDG4)]

Type "copyright™, "credits™ or "license" for more information.

IPython 4.8.8 -- An enhanced Interactive Python.

-» Introduction and overview of IPython's features.
%qu1ckref -» Quick reference.
help -» Python's own help system.
object? -»> Details about 'object', use 'object??’ for extra details.
¥guiref -> A brief reference about the graphical user interface.

In [1]:

Ian D Chivers Chapter 26

306 Graphics plotting in Python using matplotlib

The next screenshot shows typing in the following commands

from pylab import *
plot([1,2,3,4])
show ()

Here is the screen shot.

@& Jupyter QtConsole — | x
File Edit View Kernel Window Help

Jupyter QtConsole 4.1.@ s
Python 3.5.1 |Anaconda 2.4.8 (64-bit)| (default, Dec 7 2015, 15:8@:12) [MSC

v.190@ 64 bit (AMDG4)]

Type “copyright™, "credits™ or "license” for more information.

IPython 4.8.8 -- An enhanced Interactiwve Python.
-» Introduction and overview of IPython's features.
%quickref -»> Quick reference.

help -» Pythen's own help system.
object? -» Details about ‘object’, use 'object??’ for extra details.
#guiref -»> A brief reference about the graphical user interface.

In [1]: from pylab import *

In [2]: plot([1,2,3,4])
Out[2]: [<matplotlib.lines.Line2D at @xafl652a9@:]

In [3]: show()

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib

Here is the plot.

307

T=1
. Figure 1

POO 4+ BEV

I i |

26.3 Example 1 - Simple trigonometric plot
Here is the source code.
from pylab import *

import numpy as np
import math

size=181

x=0.0

xaxis = np.empty([size],dtype=int32)
val = np.empty([size],dtype=float64)
y2 = np.empty([size],dtype=float64)

for i in range(size):
xaxis[1]=(1-90)
x=(1-90) *math.pi/180.0
yl[i] = math.sin(x)
y2[i] = math.cos (x)
plot (xaxis,yl, 'r—--',xaxis,y2,'g-.")
show ()

Ian D Chivers

Chapter 26

308 Graphics plotting in Python using matplotlib

Here is the saved plot file.

1.0

0.0 -

-05¢

-1.0 ==

~100

Chapter 26

Ian D Chivers

50

100

Graphics plotting in Python using matplotlib

309

Here is the screen shot of the window it appears in.

L. A\ Figure 1

P OO +

1.0

8

05}

0.0}

100

Here is a brief coverage of the matplot api.

acorr(x, *[, data])

Plot the autocorrelation of x.

angle spectrum(x[, Fs, Fc, win-
dow, pad to, ...])

Plot the angle spectrum.

annotate(text,
**kwargs)

Xy, *args,

Annotate the point xy with text s.

arrow(x, y, dx, dy, **kwargs)

Add an arrow to the axes.

autoscale([enable, axis, tight])

Autoscale the axis view to the data (toggle).

autumn()

n.n

Set the colormap to autumn".

axes([arg])

Add an axes to the current figure and make it the cur-
rent axes.

axhline([y, xmin, xmax])

Add a horizontal line across the axis.

Ian D Chivers Chapter 26

310 Graphics plotting in Python using matplotlib

axhspan(ymin, ymax[, xmin, Add a horizontal span (rectangle) across the axis.
xmax])

axis(*v, **kwargs) Convenience method to get or set some axis properties.
axvline([x, ymin, ymax]) Add a vertical line across the axes.

;}g;)lz]z;n(xmm, xmax[, ymin, Add a vertical span (rectangle) across the axes.

bar(x, height[, width, bottom,
align, data])

Make a bar plot.

barbs(*args[, data])

Plot a 2-D field of barbs.

ba_rh(y, width[, height, left, Make a horizontal bar plot.

align])

bone() Set the colormap to bone". "

box([on]) Turn the axes box on or off on the current axes.
bo}%p lot(x[, motch, - sym, vert, Make a box and whisker plot.

whis, ...])

broken barh(xranges, yrange, *,
data])

Plot a horizontal sequence of rectangles.

cla()

Clear the current axes.

clabel(CS, *args, **kwargs)

Label a contour plot.

cIf()

Clear the current figure.

clim([vmin, vmax])

Set the color limits of the current image.

close([fig]) Close a figure window.
cohere(x, y[, NFFT, Fs, Fe, Plot the coherence between x and y.
detrend, ...])

colorbar([mappable, cax, ax])

Add a colorbar to a plot.

connect(s, func)

Connect event with string s to func.

contour(*args[, data])

Plot contours.

contourf(*args|, data])

Plot contours.

cool()

Set the colormap to cool". "

copper()

n"nn

Set the colormap to copper".

csd(x, y[, NFFT, Fs, Fc, detrend,
window, ...])

Plot the cross-spectral density.

Chapter 26

Ian D Chivers

Graphics plotting in Python using matplotlib

311

Remove the Axes ax (defaulting to the current axes)

delaxes([ax]) from its figure.
disconnect(cid) Disconnect callback id cid
draw() Redraw the current figure.

errorbar(x, y[, yerr, xerr, fmt,
ecolor, ...])

Plot y versus x as lines and/or markers with attached
errorbars.

eventplot(positions[, orientation,

")

Plot identical parallel lines at the given positions.

figimage(*args, **kwargs)

Add a non-resampled image to the figure.

figlegend(*args, **kwargs)

Place a legend in the figure.

fignum_exists(num)

Return whether the figure with the given id exists.

figtext(x, y, s, *args, **kwargs)

Add text to figure.

figure([num,
facecolor, ...])

figsize, dpi,

Create a new figure.

fill(*args[, data])

Plot filled polygons.

fill between(x, yl[, y2, where,
-]

Fill the area between two horizontal curves.

fill betweenx(y, x1[, x2, where,
step, ...])

Fill the area between two vertical curves.

findobj([o, match, include self])

Find artist objects.

flag()

nn

Set the colormap to flag".

Get the current Axes instance on the current figure

sk
gea(*tkwargs) matching the given keyword args, or create one.
gct() Get a reference to the current figure.
gci() Get the current colorable artist.

get _current fig manager()

Return the figure manager of the active figure.

get figlabels()

Return a list of existing figure labels.

get fignums()

Return a list of existing figure numbers.

get plot commands()

Get a sorted list of all of the plotting commands.

ginput(*args, **kwargs)

Blocking call to interact with a figure.

gray()

nn

Set the colormap to gray".

grid([b, which, axis])

Configure the grid lines.

Ian D Chivers Chapter 26

312

Graphics plotting in Python using matplotlib

hexbin(x, y[, C, gridsize, bins,
xscale, ...])

Make a hexagonal binning plot.

hlSF(X[, bins, range, density, Plot a histogram.
weights, ...])
hist2d(x, y[, bins, range,

normed, weights, ...])

Make a 2D histogram plot.

hlines(y, xmin, xmax[, colors,
linestyles, ...])

Plot horizontal lines at each y from xmin to xmax.

hot()

Set the colormap to hot". "

hsv()

non

Set the colormap to hsv".

imread(fname[, format])

Read an image from a file into an array.

imsave(fname, arr, **kwargs)

Save an array as in image file.

imshow(X[, cmap, norm, aspect,

n)

Display an image, 1.e.

inferno()

nn

Set the colormap to inferno".

install repl displayhook()

Install a repl display hook so that any stale figure are
automatically redrawn when control is returned to the
repl.

10ff() Turn the interactive mode off.

ion() Turn the interactive mode on.
isinteractive() Return the status of interactive mode.
jet() Set the colormap to jet". "

legend(*args, **kwargs)

Place a legend on the axes.

locator params([axis, tight])

Control behavior of tick locators.

loglog(*args, **kwargs)

Make a plot with log scaling on both the x and y axis.

magmal()

non

Set the colormap to magma".

magnitude spectrum(x[, Fs, Fc,
window, ...])

Plot the magnitude spectrum.

margins(*margins[, X, y, tight])

Set or retrieve autoscaling margins.

matshow(A[, fignum])

Display an array as a matrix in a new figure window.

minorticks off()

Remove minor ticks from the axes.

minorticks _on()

Display minor ticks on the axes.

Chapter 26

Ian D Chivers

Graphics plotting in Python using matplotlib

313

nipy_spectral()

Set the colormap to nipy_spectral". "

pause(interval)

Pause for interval seconds.

pcolor(*args|,
cmap, vmin, ...])

alpha, norm,

Create a pseudocolor plot with a non-regular rectangu-
lar grid.

pcolormesh(*args[, alpha, norm,
cmap, vmin, ...])

Create a pseudocolor plot with a non-regular rectangu-
lar grid.

phase spectrum(x[, Fs, Fc, win-
dow, pad to, ...])

Plot the phase spectrum.

pie(x[, explode, labels, colors,
autopct, ...])

Plot a pie chart.

pink()

Set the colormap to pink". "

plasma()

non

Set the colormap to plasma".

plot(*args|, scalex, scaley, data])

Plot y versus x as lines and/or markers.

plot date(x, y[, fmt, tz, xdate,
ydate, data])

Plot data that contains dates.

plotfile(fname[, cols, plotfuncs,
comments, ...])

Plot the data in a file.

polar(*args, **kwargs)

Make a polar plot.

prism()

n.n

Set the colormap to prism".

psd(x[, NFFT, Fs, Fc, detrend,
window, ...])

Plot the power spectral density.

quiver(*args|, data])

Plot a 2-D field of arrows.

quiverkey(Q, X, Y, U, label,
*¥kw)

Add a key to a quiver plot.

rc(group, **kwargs)

Set the current rc params.

rc_context([rc, fname])

Return a context manager for managing rc settings.

rcdefaults()

Restore the rc params from Matplotlib's internal default
style.

rgrids(*args, **kwargs)

Get or set the radial gridlines on the current polar plot.

savefig(*args, **kwargs)

Save the current figure.

sca(ax)

Set the current Axes instance to ax.

scatter(x, y[, s, ¢, marker, cmap,
norm, ...J)

A scatter plot of y vs x with varying marker size and/or
color.

Ian D Chivers Chapter 26

314

Graphics plotting in Python using matplotlib

sci(im)

Set the current image.

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

set_cmap(cmap)

Set the default colormap.

setp(obj, *args, **kwargs)

Set a property on an artist object.

show(*args, **kw)

Display a figure.

specgram(x[, NFFT, Fs,
detrend, window, ...])

Fc,

Plot a spectrogram.

spring()

"nn

Set the colormap to spring".

spy(Z[, precision, marker,

markersize, ...])

Plot the sparsity pattern of a 2D array.

stackplot(x, *args[, data])

Draw a stacked area plot.

stem(*args[, linefmt, markerfmt,
basefmt, ...])

Create a stem plot.

step(x, y, *args[, where, data])

Make a step plot.

streamplot(x, y, u, v[, density,
linewidth, ...])

Draw streamlines of a vector flow.

subplot(*args, **kwargs)

Add a subplot to the current figure.

subplot2grid(shape, loc[,

rowspan, colspan, fig])

Create an axis at specific location inside a regular grid.

subplot_tool([targetfig])

Launch a subplot tool window for a figure.

subplots([nrows, ncols, sharex,
sharey, ...])

Create a figure and a set of subplots.

subplots_adjust([left,
right, top, ...])

bottom,

Tune the subplot layout.

summer()

"non

Set the colormap to summer".

suptitle(t, **kwargs)

Add a centered title to the figure.

switch_backend(newbackend)

Close all open figures and set the Matplotlib backend.

table(**kwargs)

Add a table to the current axes.

text(x, y, s[, fontdict, withdash])

Add text to the axes.

thetagrids(*args, **kwargs)

Get or set the theta gridlines on the current polar plot.

Chapter 26

Ian D Chivers

Graphics plotting in Python using matplotlib

315

tick params([axis])

Change the appearance of ticks, tick labels, and
gridlines.

ticklabel format(*[, axis, style,

..])

Change the ScalarFormatter used by default for linear
axes.

tight layout([pad, h_pad, w_pad,
rect])

Automatically adjust subplot parameters to give speci-
fied padding.

title(label[, fontdict, loc, pad])

Set a title for the axes.

tricontour(*args, **kwargs)

Draw contours on an unstructured triangular grid.

tricontourf(*args, **kwargs)

Draw contours on an unstructured triangular grid.

tripcolor(*args, **kwargs)

Create a pseudocolor plot of an unstructured triangular
grid.

triplot(*args, **kwargs)

Draw a unstructured triangular grid as lines and/or
markers.

twinx([ax])

Make a second axes that shares the x-axis.

twiny([ax])

Make a second axes that shares the y-axis.

uninstall _repl displayhook()

Uninstall the matplotlib display hook.

violinplot(dataset([, positions, Make a violin plot.
vert, ...])
viridis() Set the colormap to viridis". "

vlines(x, ymin, ymax[, colors,
linestyles, ...])

Plot vertical lines.

waitforbuttonpress(*args,
**kwargs)

Blocking call to interact with the figure.

winter()

"nn

Set the colormap to winter".

xcorr(x, y[, normed, detrend,

usevlines, ...])

Plot the cross correlation between x and y.

Turn on xked sketch-style drawing mode.This will only

xked([scale, length, random- have effect on things drawn after this function is
ness|)
called..
xlabel(xlabell, fontdict, Set the label for the x-axis.
labelpad])

xlim(*args, **kwargs)

Get or set the x limits of the current axes.

xscale(value, **kwargs)

Set the x-axis scale.

Ian D Chivers Chapter 26

316 Graphics plotting in Python using matplotlib

xticks([ticks, labels])

Get or set the current tick locations and labels of the
X-axis.

labelpad])

ylabel(ylabell, fontdict,

Set the label for the y-axis.

ylim(*args, **kwargs)

Get or set the y-limits of the current axes.

yscale(value, **kwargs)

Set the y-axis scale.

yticks([ticks, labels])

Get or set the current tick locations and labels of the
y-axis.

We will only use a very small subset of these functions in the examples.

26.4 Example 2 - Enhanced trigonometric plot

Here is the source code.

from pylab import *
import numpy as np

import math

size=181

x=0.0

xaxis = np.empty([size],dtype=int32)
vl = np.empty([size],dtype=float64d)
y2 = np.empty([size],dtype=float64d)
y3 = np.empty([size],dtype=float64d)

for i in range(size):

xaxis[1]=(1-90)

x=(1-90) *math.pi/180.0

yl[i] = math.sin (x)
y2[i] = math.cos (x)
y3[i] = math.tan (x)

axis([-90,90,-1,1]

)

title(' Sine, cosine and tangent plots')

plot (xaxis,yl, 'r-"'
plot (xaxis,y2, 'g.
plot (xaxis,y3, "b-.
show ()

|l

Chapter 26

)
)

)

Ian D Chivers

Graphics plotting in Python using matplotlib

We have added a tangent plot, title and relabelled the axis. Here is the output.

1.0 Sine, cosine and tangent plots

317

@

05+

0.0

-05¢

_10 1 ! | 1

=50 0 50

We use this example in the next couple of examples.
26.5 Example 3 - adding a legend, matplotlib defaults
Here is the program.

from pylab import *
import numpy as np
import math

size=181

x=0.0

xaxis = np.empty([size],dtype=int32)
at = np.empty([size],dtype=float64)
y2 = np.empty([size],dtype=float64d)
y3 = np.empty([size],dtype=float6d)

for 1 in range(size):

xaxis[1]=(1-90)

x=(1-90) *math.pi/180.0

yl[i] = math.sin(x)

y2[i] = math.cos(x)

y3[i] = math.tan(x)
axis([-90,90,-1,11)
title(' Sine, cosine and tangent plots')
plot (xaxis,yl, 'r=-")

Ian D Chivers

Chapter 26

318 Graphics plotting in Python using matplotlib

plot (xaxis,vy2,'g.")

plot (xaxis,y3, 'b-.")
legend(['Sine', "Cosine', 'Tangent'])
show ()

Here is the plot.

Sine, cosine and tangent plots
!/
/

1.00

0.75 -
0.50 - 2
0.25 -
0.00

~0.25 -

—0.50 - 7

f Sine
f + Cosine
j —-= Tangent

—0.75 4

—1.00

T T T T
—80 —60 —40 =20 0 20 40 60 80

Python finds a space to put the plot. The positioning can be controlled using the matplotlib
api. Here is a link to some of the documentation.

https://matplotlib.org/api/ as gen/matplotlib.pyplot.leg-
end.html

Happy reading.
26.6 Example 4 - adding a legend with manual positioning
Here is the program.

from pylab import *
import numpy as np
import math

size=181

x=0.0

xaxis = np.empty([size],dtype=int32)
at = np.empty([size],dtype=£float6d)
y2 = np.empty([size],dtype=£float6d)
y3 = np.empty([size],dtype=£float6d)

for 1 in range(size):

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 319

xaxis[i]=(1-90)

x=(1-90) *math.pi/180.0

yl1[i] = math.sin (x)

y2[i] = math.cos (x)

y3[i] = math.tan (x)
axis([-90,90,-1,1])
title(' Sine, cosine and tangent plots')
plot (xaxis,yl, 'r-")

")

plot (xaxis,vy2,'g."’

plot (xaxis,y3, 'b-.")

text (-65,-0.75, 'Sine'")
text (=80, 0.00, 'Cosine')
text (-30,-0.75, '"Tangent"')
show ()

Here is the plot.

Sine, cosine and tangent plots
1.00 7

/

0.75 4
0.50 4

0.25 4

0.00 Cosine

—0.25 A
7
~0.50 1 4
o

-0.75 4 Sine / Tangent

!

f
_]-IDD T T T T T T T T T

—80 —60 —40 =20 0 20 40 60 a0

The legends have been placed using the text component of the matplotlib api. The coordi-
nates have been chosen with a bit of trial and error.

Longer text descriptions could be achieved by annotating the plots and making references to
the actual text of the document.

26.7 Example 5 - Bar charts

Here are some bar chart examples. The data is taken from the following site:

http://www.metoffice.gov.uk/public/weather/climate-his-
toric/#?tab=climateHistoric

Ian D Chivers Chapter 26

320 Graphics plotting in Python using matplotlib

A variety of programs are used to manipulate this data.

e Programs to download the files from the Met Office site and save the files lo-
cally are written in C# and Java.

e A sed script is used to convert the missing values (---) to a flag value (-999)
e A Fortran program is used to produce summary calculations on the data

e Python programs are used to do plots on the data
Use the best tool for the job!
Here is the source code for the first program.
from pylab import *

import numpy as np
nmonths=12

offset=0.5

xaxlis = np.empty([nmonths],dtype=int32)
vl = np.empty([nmonths],dtype=float64)
y2 = np.empty([nmonths],dtype=float64)

yl=[7.33,5.26,5.49,4.29,4.11,4.21,4.90,5.39,5.93,7.43,8.07,8.2
8]
for i in range (nmonths) :
xaxis[i]=i+1
y2[i]=y1l[i]*25.4
axis([1,12,0.0,10.0])
title(' Monthly rainfall figures for Cwmystwyth inches')
bar (xaxis,yl,offset,color="b")
#axis ([0,13,0.0,200.0])
#title (' Monthly rainfall figures for Cwmystwyth mm')
#bar (xaxis+offset,y2,o0ffset,color="r")
show ()

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 321

Here is the plot.

%, Figure 1 - O x

a € > + Q B

it

Monthly rainfall figures for Cwmystwyth inches

10

26.8 Example 6 - bar chart with standard deviations
Here is the source code for the second program.
from pylab import *

import numpy as np
nmonths=12

offsetl = 0.4

offset?2 0.5

offset3 = 0.6

xaxis = np.empty([nmonths],dtype=int32)

yl = np.empty ([nmonths],dtype=float64)

y2 = np.empty([nmonths],dtype=float64)

at = [7.33 , 5.26 , 5.49 , 4.29 , 4.11 , 4.21
, 4.90 , 5.39 , 5.93 , 7.43 , 8.07 , 8.28]

y2 = [186.10 ,133.67 ,139.50 ,109.02 ,104.46 ,106.92
,124.40 ,136.28, 150.54 ,188.76 ,204.96 ,210.28]

std dev = [78.01 , 77.36 , 70.51 , 51.33 , 49.12 , 52.13 ,

59.28 , 55.72 , 55.72 , 61.84 , 85.96 , 90.57]
for i in range (nmonths) :

xaxis[i]=i+1
axis([1,13,0.0,325.01)

Ian D Chivers Chapter 26

322 Graphics plotting in Python using matplotlib

title (' Monthly rainfall figures for Cwmystwyth mm'")

bar (xaxistoffsetl,y2,offsetl,color="r',yerr=std dev)

xticks (xaxistoffset2, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul
', '"Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

show ()

Here is the plot.

Monthly rainfall figures for Cwmystwyth mm

300 | < |

250 - .

200 - .

150 .

100 | .

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

There is obviously quite a wide variation in monthly rainfall over this 50 year period.

26.9 Example 7 - bar chart with 4 frequencies

Here is the source code.

from pylab import *
import numpy as np
n intervals= 10
offset = 10

#xaxis = np.empty([n intervals],dtype=int32)

#xaxis = [10,20,30,40,50,60,70,80,90,100]
#axis ([0,110,0,501)

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 323

labels =
('2010','2011"','2012','2013"','2014"','2015"','2016",'2017"','2019
','2019")

Yy _pos = np.arange (len(labels))

2l = np.empty([n_intervals],dtype=int32)

at = [184, 186, 180, 179, 180, 176, 176, 154, 160, 147]
y2 = np.empty([n_intervals],dtype=int32)

y2 = [0, 164, 169, 162, 166, 1le66, 176, 141, 145, 140]
v3 = np.empty([n_intervals],dtype=int32)

yv3 = [0, 20, 17, 18, 13, 4, 0, 36, 11,
201

v = np.empty([n_intervals],dtype=int32)

va = [0, 22, 11, 17, 14, 10, 9, 13, 18,

81]

plt.figure(figsize=(6,6))

bar (y pos-0.30,yl,align="'center',color="red',width=0.125)

bar (y pos-0.10,y2,align="'center',color="green',width=0.125)

bar (y pos+0.10,y3,align="'center',color="'yellow',width=0.125)
(

bar (y pos+0.30,y4,align="'center',color="'blue',width=0.125)

plt.xticks (y pos, labels)
plt.ylabel ('Frequency')
title(' BCS Fortran SG Membership numbers over last 10

years')

show ()

Ian D Chivers Chapter 26

324 Graphics plotting in Python using matplotlib

Here is the plot.

BCS Fortran SG Membership numbers over last 10 years

175 +

150 ~

125 -

Frequency
=
=
o
I

=]
un
I

50 4

25

2010 2011 2012 2013 2014 2015 2016 2017 2019 2019

The meaning of the colours are given below:
e red - total member numbers in August

e green - common numbers between last year and this year

yellow - the number who left

blue - the number who joined
The captions would have difficult to add to the plot.

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib

26.10 Example 8 - bar chart with 10 frequencies

Here is the source code.

from pylab import *
import numpy as np

n_intervals= 8
offset = 10
#xaxis = np.empty([n intervals],dtype=int32)

#xaxis =

#axis ([0,

labels =

[10,20,30,40,50,60,70,80,90,100]
110,0,50])

325

('20-29','30-39','40-49"','50-59"','60-69',"'70-79"','80-89"', '90-9

9")
y pos =

2010

y0 =
y0 =

2011

vyl =

2012

y2 =

2013

y3 =

2014

v4 =

2015

yo =

np.arange (len(labels))

np.empty ([n intervals],dtype=int32)
[7, 23, 42, 36, 46, 15, 0, 0]

np.empty ([n intervals],dtype=int32)
([7, 18, 46, 55, 40, 18, 1, 0]

np.empty ([n intervals],dtype=int32)
[8, 15, 42, 49, 43, 21, 1, 0]

np.empty ([n intervals],dtype=int32)
(4, 17, 38, 51, 45, 20, 2, 1]

np.empty ([n intervals],dtype=int32)
[3, 16, 32, 50, 51, 23, 2, 1]

np.empty ([n intervals],dtype=int32)
[4, 11, 32, 50, 50, 25, 2, 1]

Ian D Chivers

Chapter 26

326 Graphics plotting in Python using matplotlib

2016

v6 = np.empty([n_intervals],dtype=int32)
y6 = [3, 9,31,49,53,26, 3, 1]

2017

y7 = np.empty([n_intervals],dtype=int32)
v7 = [2,10,25,37,48,25, 6, 1]

2018

y8 = np.empty([n_intervals],dtype=int32)
y8 = [4,10,27,37,44,28, 8, 1]

2019

v9 = np.empty([n_intervals],dtype=int32)
v = [1, 6, 22, 38, 43, 27, 9, 0]

plt.figure(figsize=(6,6))

bar (y pos-0.375,y0,align="center',color="blue',width=0.05)
bar (y pos-0.300,yl,align="center',color="red',width=0.05)

bar (y pos-0.225,y2,align="center',color="cyan',width=0.05)
bar (y pos-0.150,y3,align="center',color="magenta',width=0.05)
bar (y pos-0.075,y4,align="center',color="yellow',width=0.05)
bar (y pos+0.075,y5,align="center',color="orange',width=0.05)
bar (y pos+0.150,y6,align="cen-
ter',color="'darkgreen',width=0.05)

bar (y pos+0.225,y7,align="center',color="lime',width=0.05)
bar (y pos+0.300,y8,align="center',color="violet',width=0.05)
bar (y pos+0.375,y9,align="center',color="pink',width=0.05)

plt.xticks (y pos, labels)
plt.ylabel ('Frequency')
title(' BCS Fortran SG Age frequencies 2010-2019")

show ()

Chapter 26 Ian D Chivers

Here is the plot.

Frequency

Graphics plotting in Python using matplotlib

BCS Fortran SG Age frequencies 2010-2019

327

30

40 -

L
o
1

20

10 +

20-29 30-39 40-49 50-

Ian D Chivers

T
59 60-69 70-79 B80-89 90-99

Chapter 26

328 Graphics plotting in Python using matplotlib

26.11 Example 9 - Mapping with Python 2.x and basemap

Visit

http://matplotlib.org/basemap/

for some basic information. You may have some problems running this example, due to im-
port issues, and dependencies between versions of Python and the various imported mod-

ules.
O -
= O X N
X P ¥
@ nttpy//matplotlib.org/basemap/ v DY
#
oma BBC Weather - SW2 @ Welcome to the Matplotlib ... -§
File Edit View Favourites Tools Help E
»
= © Home Transport for Lond... Suggested Sites * "

Basemap Matplotiib Toolkit 1.0.8 documentation »

Table Of Contents

ne to the Matplotlib

This Page

Show Source
Quick search

L |Gol

Enter search terms or a module,
class or function name.

* The Matplotlib Basemap Toolkit User's Guide
= Download
= Introduction
= Installing
Setting up the map
Drawing a Map Background
Drawing and Labelling Parallels and Merdians
Converting to and from map projection coordinates
Plotting data on a map (Example Gallery)
* The Matplotlib Basemap Toolkit API
= matplotlib basemap toolkit

Indices and tables

+ Index
» Module Index
* Search Page

Basemap Matplotiib Toolkit 1.0.8 documentation »

@ Copyright 2011, Jeffrey Whitaker. Last updated on Feb 13, 2014. Created using Sphinx 1.2.1.

- E] -~ (= Eé_’] ~ Page~ Safety~

next | modules | index

Welcome to the Matplotlib Basemap Toolkit
documentation!

next | modules | index

D ®100% ~

We are going to create a map of tsunami events. I did the origial plot whilst on a United
Nations Environment Programme secondment. Section 9 of their Environmental Reports
cover natural disasters, and these include

e Earthquakes

e Volcanoes
e Tsunamis
e Floods

e Landslide

e Natural Dams

Chapter 26

Ian D Chivers

Graphics plotting in Python using matplotlib 329

e Droughts

e Wildfires

The bibliography has details of the publications I worked on. The map plots have been done
on both Windows and openSuSe.

On a Windows platfrom you need to download and install the Python 2.7 version as
basemap works with this version, but not with the Python 3.5 version.

On the openSuSE system I did the following as root

e downloaded the Python 3.5 version anaconda version;

e installed anaconda doing bash download.sh file;

e chose /opt/anaconda3 as the install directory;

e you must add the above directory to your path to be able to run the software;
On both platforms you will need to run
conda install basemap

from a console to install the additional mapping software. You can then run jupyter
qtconsole and then running the python source file will generate the plots.

Here is the source file.
import numpy as np

import matplotlib.pyplot as plt
from mpl toolkits.basemap import Basemap

tsunami data file is called
tsunami.txt

There are 3033 entries
region size

0 378

1 206

¥ 2 41

3 54

¥ 4 60

5 1540

6 80

¥ 7 144

8 245

9 285

#

¥ 1x,£f7.2,2%x,£7.2

#

1 need 9 * 2 arrays

#

tsunami file = "tsunami.txt"
reg0 = 378

regl = 206

reg?2 = 41

reg3 = 54

Ian D Chivers Chapter 26

330 Graphics plotting in Python using matplotlib
reg4 60

regb 1540

regb6 80

reg’ 144

regs8 245

reg9 285

latO np.empty([reg0] , dtype=np.float64)
lon0 np.empty([reg0] , dtype=np.float64d)
latl np.empty([regl] , dtype=np.float64)
lonl np.empty([regl] , dtype=np.float64d)
lat2 np.empty([reg2] , dtype=np.float64)
lon2 np.empty([reg2] , dtype=np.float64d)
lat3 np.empty([reg3] , dtype=np.float64d)
lon3 np.empty([reg3] , dtype=np.float64d)
lat4 np.empty([regd4d] , dtype=np.float6d)
loni4 np.empty([regd4d] , dtype=np.float64d)
lath np.empty([regb] , dtype=np.float64d)
lonb np.empty([regb] , dtype=np.float64d)
laté6 np.empty([reg6] , dtype=np.float64)
lon6 np.empty([reg6] , dtype=np.float64d)
lat? np.empty([reg7] , dtype=np.float64d)
lon7 np.empty([reg7] , dtype=np.float64d)
lat8 np.empty([reg8] , dtype=np.float64)
lon8 np.empty([reg8] , dtype=np.float64)
lat9 np.empty([reg9] , dtype=np.float64)
lon9% np.empty([reg9] , dtype=np.float64)

f=open (tsunami_ file)

for i in range (0, reg0):
line=f.readline ()
latO[i]=(float) (1line[1l:7])
lonO[i]=(float) (1line[1l0:1061])

print

print

{0:7.2f} ".format (latO[i])
{0:7.2f} ".format (lonO[i])

for i in range (0, regl):
line=f.readline ()
latl[i]=(float) (line[1:7])

lonl[i]=(float) (1line[10:106])
print " {0:7.2f} ".format(latl[i])

print " {0:7.2f} ".format (lonl[i])

for i in range (0, reg2):
line=f.readline ()
lat2[i]=(float) (line[1:7])
lon2[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat2([i])

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib

print " {0:7.2f} ".format (lon2[i])

for i in range (0, reg3):
line=f.readline ()
lat3[i]=(float) (line[1l:7])
lon3[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat3[i])

print " {0:7.2f} ".format (lon3[i])

for i in range (0, regid):
line=f.readline ()
lat4[i]=(float) (line[1:7])
lond[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat4[i])

print " {0:7.2f} ".format (lon4[i])

for i in range (0, regb):
line=f.readline ()
latb[i]=(float) (1line[1l:7])
lon5[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat5[i])

print " {0:7.2f} ".format (lon5[i])

for i in range (0, regb) :
line=f.readline ()
lato[i]=(float) (1line[1l:7])
lon6[i]=(float) (1line[10:106])

print " {0:7.2f} ".format (lato6[i])

print " {0:7.2f} ".format (lon6[i])

for i in range (0, reg7):
line=f.readline ()
lat7[i]=(float) (line[1:7])
lon7[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat7[i])

print " {0:7.2f} ".format (lon7[i])

for i in range (0, reg8):
line=f.readline ()
lat8[i]=(float) (1line[1l:7])
lon8[i]=(float) (1line[1l0:106])

print " {0:7.2f} ".format (lat8[i])

print " {0:7.2f} ".format (lon8[i])

for i in range (0, reg9):
line=f.readline ()
lat9[i]=(float) (line[1l:7])
lon9[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat9[i])

Ian D Chivers

331

Chapter 26

332 Graphics plotting in Python using matplotlib

print " {0:7.2f} ".format (lon9[i])

draw map with markers for float locations
m = Basemap (projection='hammer',lon 0=180)
m.drawmapboundary ()

m.fillcontinents ()

X, y = m(lon0O,1lat0)

m.scatter (x,y,3,marker="o0"',color="red"')

x, y = m(lonl,latl)

m.scatter (x,y,3,marker="0"',color="orange')
X, y = m(lon2,lat2)

m.scatter (x,y,3,marker="0"',color="green')
X, y = m(lon3,lat3)

m.scatter (x,y,3,marker="'0o"',color="blue')

x, y = m(lon4d,lat4)

m.scatter (x,y,3,marker="0"',color="indigo")
x, y = m(lon5,1lath)

m.scatter (x,y,3,marker="0"',color="violet"')
X, y = m(lon6,lato6)

m.scatter (x,y,3,marker="'0o"',color="cyan')

x, y = m(lon7,lat?)

m.scatter (x,y,3,marker="0"',color="magenta')
X, y = m(lon8,1lat8)

m.scatter (x,y,3,marker="'o0"',color="pink'")

X, y = m(lon9,1lat9)

m.scatter (x,y,3,marker="0"',color="turquoise')
plt.title (' Tsunami plots - 3033 total',fontsize=14)
plt.show ()

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 333

Here is the plot.

Tsunami plots - 3033 total

The plot file is in png format. You can save in a variety of formats.

26.12 Mapping with Python 3 and Cartopy
Cartopy is a modern mapping package that works with Python 3.x Here is their home page.
http://scitools.org.uk/cartopy/index.htm

Here is some information taken from their pages.
e Introduction

e C(Cartopy is a Python package designed for geospatial data
processing in order to produce maps and other geospatial
data analyses.

e Cartopy makes use of the powerful PROJ.4, numpy and
shapely libraries and includes a programatic interface built
on top of Matplotlib for the creation of publication quality
maps.

e Key features of cartopy are its object oriented projection
definitions, and its ability to transform points, lines, vec-
tors, polygons and images between those projections.

Ian D Chivers Chapter 26

334 Graphics plotting in Python using matplotlib

e You will find cartopy especially useful for large area /
small scale data, where Cartesian assumptions of spherical
data traditionally break down. If you’ve ever experienced
a singularity at the pole or a cut-off at the dateline, it is
likely you will appreciate cartopy’s unique features!

e Getting started - The installation guide provides information on getting up and
running. Cartopy’s documentation is arranged in user guide form, with reference
documentation available inline.

e Coordinate reference systems in Cartopy

e (Cartopy projection list

e Using cartopy with matplotlib

e The cartopy Feature interface

e Understanding the transform and projection keywords
e Using the cartopy shapereader

e (artopy developer interfaces

The outline link found above the cartopy logo on all pages can be used to quickly find the
reference documentation for known classes or functions.

For those updating from an older version of cartopy, the what’s new page outlines recent
changes, new features, and future development plans.

e Getting involved

e Cartopy was originally developed at the UK Met Office to
allow scientists to visualise their data on maps quickly,
easily and most importantly, accurately. Cartopy has been
made freely available under the terms of the GNU Lesser
General Public License. It is suitable to be used in a vari-
ety of scientific fields and has an active development com-
munity.

26.12.1 Example 10 - tsunami plot using cartopy

Here is a rewrite of the tsunami example to use cartopy, rather than basemap. You need to
run the following

conda install -c conda-forge cartopy
after the Anaconda install. You need to run this as administrator.

Here is the output on one system from running this command.
conda install -c conda-forge cartopy
Solving environment: done

==> WARNING: A newer version of conda exists. <==
current version: 4.4.10
latest version: 4.6.2

Please update conda by running

$ conda update -n base conda

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 335

Package Plan
environment location: C:\ProgramData\Anaconda3

added / updated specs:
- cartopy

The following packages will be downloaded:

package | build

___________________________ | —

pykdtree-1.3.1 |py36h452elab 1002
54 KB conda-forge

pyproj-1.9.6 |py36hlfccOed 1000
237 KB conda-forge

numpy-1.14.2 | py36h5c71026 0
3.7 MB

blas-1.0 | mk1
6 KB

matplotlib-2.2.2 | py36 1
6.5 MB conda-forge

shapely-1.6.4 |lpy36hc90234e 1000
379 KB conda-forge

owslib-0.17.1 | py O
118 KB conda-forge

openssl-1.0.2p | hfate2cd 1002
5.4 MB conda-forge

kiwisolver-1.0.1 |lpy36he980bcd4 1002
60 KB conda-forge

ca-certificates-2018.11.29 | had4d7672 0
179 KB conda-forge

proj4-5.2.0 | hfate2cd 1001
3.4 MB conda-forge

cartopy-0.17.0 |py36h2ddeffc 1001
2.1 MB conda-forge

certifi-2018.11.29 | py36 1000

145 KB conda-forge

22.2 MB
The following NEW packages will be INSTALLED:

blas: 1.0-mkl

Ian D Chivers Chapter 26

336 Graphics plotting in Python using matplotlib

kiwisolver: 1.0.1-py36he980bc4 1002 conda-forge
pykdtree: 1.3.1-py36h452elab 1002 conda-forge

The following packages will be UPDATED:

ca-certificates: 2017.08.26-h9%4faf87 0

-—> 2018.11.29-had4d7672_ 0 conda-forge

cartopy: 0.16.0-py36_0 conda-forge
--> 0.17.0-py36h2ddeffc 1001 conda-forge

certifi: 2018.1.18-py36 0 conda-forge
--> 2018.11.29-py36 1000 conda-forge

matplotlib: 2.1.2-py36h016c42a 0
--> 2.2.2-py36_1 conda-forge

numpy: 1.14.0-py36h4a99626 1
--> 1.14.2-py36h5c71026 0

openssl: 1.0.2n-h74b6da3 0
-—> 1.0.2p-hfabe2cd 1002 conda-forge

owslib: 0.16.0-py O conda-forge
--> 0.17.1-py O conda-forge

projé: 4.9.3-vcld 5 conda-forge
-—> 5.2.0-hfa6e2cd 1001 conda-forge

pyproj: 1.9.5.1-py36_0 conda-forge
-—> 1.9.6-py36hlfccOed4 1000 conda-forge

shapely: 1.6.4-py36 0 conda-forge

-—> 1.6.4-py36hc90234e 1000 conda-forge

Proceed ([y]/n)? vy

Downloading and Extracting Packages

pykdtree 1.3.1:

gt sssatssa s as s EEE AR R AR AR R AL SR AL R LA
FHeHHHHAH A AR AH A AR A H AR EH AR EFH#EE | 100

pyproj 1.9.6:

FHAHAHHAH AR AH AR A AR A AR A AR H AR H AR
#HEHFHFAHHAR A A AR A A A H RS H A EHHHHEHHS | 10053

numpy 1.14.2:

gt sss st asaEaAEEE AR EEE AR R AR R LR AL R LA
#HEHFHFAHHAR A A AR A A A H RS H A EHHHHEHHS | 10053

blas 1.0:

gt ssatssa s asaEaAEEE AR EEE AR AR R AL AL R LA
#HEHHHHAH AR AH AR A AR H RS H AR HHH#EHSE | 1003

matplotlib 2.2.2:

FHAHAHHAH AR AH AR A AR A AR A AR H AR H AR
FHEHFHHAH A AR AH AR A H AR H SR AEHHS | 1003

shapely 1.6.4:

gt ssatssa s asaEaAEEE AR EEE AR AR R AL AL R LA
FHEHHHHAH AR A A AR H AR HFH#EHSE | 100D

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 337

owslib 0.17.1:

gt ssatssa s asaEaAEEE AR EEE AR AR R AL AL R LA
FHEHHHHAH AR A A AR A AR A RS HF SR EHSE | 100D

openssl 1.0.2p:

gt sssatsssaEsa s EEE AR AR R AR AR EER AL EEEE LA
FH&HHHHAH A AR AH A AR A H AR H AR EFH#EE | 100

kiwisolver 1.0.1:

FHAHHHHAH AR A AR A AR AR H AR AR H AR
#HeHFHHAH A AR A H AR AH AR H S SEHHS | 10053

ca-certificates 2018.11.29:

gt sss st asaEaAEEE AR EEE AR AR EER AL EEEE LA
FHEHFHHAHH AR AAHRAEFHS | 10053

proj4 5.2.0:

FHAHAHHAH AR AH AR A AR A AR H AR H AR H AR H AR
#HEHHHHAH AR A A AR H AR H AR EF S HEHHS | 1003

cartopy 0.17.0:

FHAHAHHAH AR AH AR A AR A AR A AR H AR H AR
FHeHHHHAH A AR AH A AR A H AR H AR EHH#EE | 100

certifi 2018.11.29:

gt sss st asaEaAEEE AR EEE AR R AR R LR AL R LA
#HAHFHHAH AR A A AR A F RS HFHREHSE | 1003

Preparing transaction: done

Verifying transaction: done

Executing transaction: done

Here is the source code for this version.

import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

tsunami data file is called
tsunami.txt
There are 3033 entries
region size
0 378
206
41
54
60
1540
80
144
245
285

1x,£7.2,2%x,£7.2

i need 9 * 2 arrays

S oS S S S e S S e S S e S S e S S e o
© 0 d oUW N

Ian D Chivers Chapter 26

338 Graphics plotting in Python using matplotlib

tsunami file = "tsunami.txt"

reg0 = 378

regl = 206

reg2 = 41

reg3 = 54

regd = 60

regb = 1540

reg6 = 80

reg’7 = 144

reg8 = 245

reg9 = 285

lat0 = np.empty([reg0] , dtype=np.floatc4d
lon0 = np.empty([reg0] , dtype=np.floatc4d
latl = np.empty([regl] , dtype=np.floatb64d
lonl = np.empty([regl] , dtype=np.floatb64d
lat2 = np.empty([reg2] , dtype=np.floatb64d
lon2 = np.empty([reg2] , dtype=np.floatb64d
lat3 = np.empty([reg3] , dtype=np.floatc4d
lon3 = np.empty([reg3] , dtype=np.floatc4d
lat4 = np.empty([regd] , dtype=np.floatb4d

lond4d = np.empty

N~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ —~

]
]
]
]
]
]
]
]
]
regd4] , dtype=np.floatc4
]
]
]
]
]
]
]
]
]
]

—_— — e e — e e e e e = e — e = — — — ~— ~—

lat5 = np.empty([regb] , dtype=np.floatc4d
lon5 = np.empty([regb] , dtype=np.floatc4d
lat6 = np.empty([reg6] , dtype=np.floatc4d
lon6 = np.empty([reg6] , dtype=np.floatc4d
lat7 = np.empty([reg7] , dtype=np.floatc4d
lon7 = np.empty([reg7] , dtype=np.floatc4d
lat8 = np.empty([reg8] , dtype=np.floatc4d
lon8 = np.empty([reg8] , dtype=np.floatc4d
lat9 = np.empty([reg9] , dtype=np.floatc4d
lon9 = np.empty([reg9] , dtype=np.floatc4d

f=open (tsunami_ file)

for i in range (0, reg0):
line=f.readline ()
latO[i]=(float) (1line[1l:7])
lonO[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (latO[i])

print " {0:7.2f} ".format (lonO[i])

for i in range (0, regl):
line=f.readline ()
latl[i]=(float) (line[1:7])
lonl[i]=(float) (1line[10:16])

print " {0:7.2f} ".format (latl[i])

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib

print " {0:7.2f} ".format (lonl[i])

for i in range (0, reg2):
line=f.readline ()
lat2[i]=(float) (line[1:7])
lon2[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat2([i])

print " {0:7.2f} ".format (lon2[i])

for i in range (0, reg3):
line=f.readline ()
lat3[i]=(float) (1line[1l:7])
lon3[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat3[i])

print " {0:7.2f} ".format (lon3[i])

for i in range (0, regid):
line=f.readline ()
lat4[i]=(float) (line[1:7])
lond[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat4[i])

print " {0:7.2f} ".format (lon4[i])

for i in range (0, regb):
line=f.readline ()
latb[i]=(float) (1line[1l:7])
lon5[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat5[i])

print " {0:7.2f} ".format (lon5[1i])

for i in range (0, regb):
line=f.readline ()
lato[i]=(float) (line[1l:7])
lon6[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lato6[i])

print " {0:7.2f} ".format (lon6[i])

for i in range (0, reg7):
line=f.readline ()
lat7[i]=(float) (line[1:7])
lon7[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat7[i])

print " {0:7.2f} ".format (lon7[i])

for i in range (0, reg8):
line=f.readline ()
lat8[i]=(float) (1line[1l:7])
lon8[i]=(float) (1line[1l0:106])

print " {0:7.2f} ".format (lat8[i])

Ian D Chivers

339

Chapter 26

340 Graphics plotting in Python using matplotlib

print " {0:7.2f} ".format (lon8[i])

for i in range (0, reg9):
line=f.readline ()
lat9[i]=(float) (line[1l:7])
lon9[i]=(float) (1line[10:1061])

print " {0:7.2f} ".format (lat9[i])

print " {0:7.2f} ".format (lon9[i])

plt.figure(figsize=(20, 24))
ax = plt.axes (projection=ccrs.PlateCarree())
ax.stock img ()

X, y = lon0,1latO

plt.scatter (x,y,3,marker='0o"',color="red")

x, y = lonl,latl

plt.scatter (x,y,3,marker='0o"',color="orange')
X, y = lon2,lat?2

plt.scatter (x,y,3,marker='0o"',color="green')
X, y = lon3,lat3

plt.scatter (x,y,3,marker='0o"',color="blue')

x, y = lon4d,lat4

plt.scatter (x,y,3,marker='0o"',color="indigo")
x, y = lonb5,lath

plt.scatter (x,y,3,marker='0o"',color="violet"')
X, y = lon6,laté

plt.scatter (x,y,3,marker='0o"',color="cyan')

x, y = lon7,lat?

plt.scatter (x,y,3,marker='0o"',color="magenta')
X, y = lon8,1lat8

plt.scatter (x,y,3,marker='0o"',color="pink")

X, y = lon9,1lat?9

plt.scatter (x,y,3,marker='0"',color="turquoise')

plt.title (' Tsunami plots - 3033 total',fontsize=14)
plt.show ()

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 341

Here is a sample plot.

Tsunami plots - 3033 total

The map plot is similar to the basemap example.

26.12.2 Example 11 - shifting the center of the map

This is a simple variant of the previous with the centre of the map now based on the inter-
national dateline. Here is the source.

import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

tsunami data file is called
tsunami.txt
There are 3033 entries
region size
378
206
41
54
60
1540
80
144
245
285

W O J o U b W NP O

1x,£7.2,2%,£7.2

i need 9 * 2 arrays

S o S S S e S S e S S e S S e S o e o

Ian D Chivers Chapter 26

342

tsunami file = "tsunami.txt"

reg0 = 378

regl = 206

reg2 = 41

reg3 = 54

regd = 60

regb = 1540

reg6 = 80

reg’7 = 144

reg8 = 245

reg9 = 285

lat0 = np.empty([reg0] dtype=np.
lon0 = np.empty([reg0] dtype=np.
latl = np.empty([regl] dtype=np.
lonl = np.empty([regl] dtype=np.
lat?2 = np.empty([reg2] dtype=np.
lon2 = np.empty([reg2] dtype=np.
lat3 = np.empty([reg3] dtype=np.
lon3 = np.empty([reg3] dtype=np.
lat4d = np.empty([regd] dtype=np.
lond4 = np.empty([regd] dtype=np.
latb = np.empty([regh] dtype=np.
lon5 = np.empty([regb] dtype=np.
lat6 = np.empty([regb] dtype=np.
lon6 = np.empty([regb] dtype=np.
lat7 = np.empty([reg7] dtype=np.
lon7 = np.empty([reg7] dtype=np.
lat8 = np.empty([reg8] dtype=np.
lon8 = np.empty([reg8] dtype=np.
lat9 = np.empty([reg9] dtype=np.
lon9 = np.empty([reg9] dtype=np.

f=open (tsunami file)

for i in range (0, reg0):

line=f.readline ()

latO[i]=(float) (line[1l:7])
lonO[i]=(float) (1line[10:16])+180.00

{0:7.2£}
{0:7.2£}

print "
print "

for i in range (0, regl):

line=f.readline ()

latl[i]=(float) (line[1:7])
lonl[i]=(float) (1ine[10:16])+180.00

print " {0:7.2f}

print " {0:7.2f}

Chapter 26

Graphics plotting in Python using matplotlib

float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64

—_— — e e — e e e e e = e — e = — — — ~— ~—

", . format (latO[1i])
", . format (lonO[1i])

" format (latl[i])

", . format (lonl[i])

Ian D Chivers

Graphics plotting in Python using matplotlib

for i in range (0, reg2):
line=f.readline ()
lat2[i]=(float) (line[1:7])
lon2[i]=(float) (1line[10:16])+180.00
print " {0:7.2f} ".format (lat2[i])
print " {0:7.2f} ".format (lon2[i])

for i in range (0, reg3):
line=f.readline ()
lat3[i]=(float) (line[1l:7])
lon3[i]=(float) (1line[10:16])+180.00
print " {0:7.2f} ".format (lat3[i])
print " {0:7.2f} ".format (lon3[i])

for i in range (0, regid):
line=f.readline ()
latd4[i]=(float) (line[1l:7])
lon4[i]=(float) (1line[10:16])+180.00
print " {0:7.2f} ".format (lat4[i])
print " {0:7.2f} ".format (lon4[i])

for i in range (0, regb):
line=f.readline ()
lat5[i]=(float) (line[1l:7])
lon5[i]=(float) (1ine[10:16])+180.00
print " {0:7.2f} ".format (lat5[i])
print " {0:7.2f} ".format (lon5[1i])

for i in range (0, regb) :
line=f.readline ()
lat6[i]=(float) (line[1l:7])
lono6[i]=(float) (1line[10:16])+180.00
print " {0:7.2f} ".format (lato6[i])
print " {0:7.2f} ".format (lon6[i])

for i in range (0, reg7):
line=f.readline ()
lat7[i]=(float) (line[1:7])
lon7[i]=(float) (1ine[10:16])+180.00
print " {0:7.2f} ".format(lat7[i])
print " {0:7.2f} ".format (lon7[i])

for i in range (0, reg8):
line=f.readline ()
lat8[i]=(float) (line[1l:7])
lon8[i]=(float) (1line[10:16])+180.00
print " {0:7.2f} ".format (lat8[i])
print " {0:7.2f} ".format (lon8[i])

Ian D Chivers

343

Chapter 26

344 Graphics plotting in Python using matplotlib

for i in range (0, reg9):
line=f.readline ()
lat9[i]=(float) (line[1l:7])
lon9[i]=(float) (1line[10:16])+180.00

print " {0:7.2f} ".format (lat9[i])

print " {0:7.2f} ".format (lon9[i])

plt.figure(figsize=(6, 3))

ax = plt.axes(projection=ccrs.PlateCarree (
central longitude=180))

ax.coastlines (resolution='110m")

ax.gridlines|()

plt.figure(figsize=(20, 24))

ax = plt.axes (projection=ccrs.PlateCarree (
central longitude=180))
ax = plt.axes(projection=ccrs.PlateCarree())

ax.stock img ()

X, y = lon0,1lat0
plt.scatter (x,y,3,marker='0o"',color="red")

x, y = lonl,latl
plt.scatter (x,y,3,marker='0o"',color="orange')

X, y = lon2,lat2
plt.scatter (x,y,3,marker='0o"',color="green')

X, y = lon3,lat3
plt.scatter (x,y,3,marker='0o"',color="blue')

x, y = lon4d,lat4
plt.scatter (x,y,3,marker='0o"',color="indigo")

x, y = lonb5,lath
plt.scatter (x,y,3,marker='0o"',color="violet"')

X, y = lon6,laté6
plt.scatter (x,y,3,marker='0o"',color="cyan')

x, y = lon7,lat?
plt.scatter (x,y,3,marker='0o"',color="magenta')

X, y = lon8,1lat8
plt.scatter (x,y,3,marker='0o"',color="pink")

X, y = lon9,lat?9

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 345

plt.scatter(x,y,3,marker="0o',color="turquoise')

plt.title ("' Tsunami plots - 3033 total', fontsize=14)
plt.show ()

Note that we have to shift the coordinates.
Here is the plot.

Tsunami plots - 3033 total

The plots were done with different versions of matplotlib and cartopy.

26.12.3 Example 12 - mapping using UK postcodes

In this example we look at plotting a membership map of the BCS Fortran Specialist
Group. I am membership secretary.

The following site
https://gridreferencefinder.com/postcodeBatchConverter/
provides the ability to convert UK postcodes into UK mapping formats.

Here are 5 sample postcodes.

SMS5 4)JT

BN16 2QT

G77 5SDR

SO50 4LQ

PA6 TNY

Here is the converted data.
Postcode Description Grid Reference X (easting)Y (northing) Latitude Longitude

SM5 4JT SM5 4JT TQ 27078 62759 527078 162759 51.34971 -0.17660918

Ian D Chivers Chapter 26

346 Graphics plotting in Python using matplotlib

BN16 2QT BN16 2QT TQ 04481 01558 504481 101558 50.804169 -0.51863235
G77 5DR G77 5DR NS 55211 56378 255211 656378 55.778979 -4.3101071
SO50 4LQ SO50 4LQ SU 45516 22106 445516 122106 50.996555 -1.3527812
PA6 TNY PA6 TNY NS 42045 66100 242045 666100 55.862124 -4.5254592

We convert the postcodes, and then edit the output to generate data files that we can read
into the Python program to actually do the mapping.

Here is a sample of the data input file for the Python program.

51.34971 , -0.17661
50.80417 , -0.51863
55.77898 , -4.31011
50.99669 , -1.35290
55.86234 , -4.52512

Here is the program source.

import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

ax.gridlines ()

BCS Fortran member dat
Two sets of data

#

I need 2 * 2 arrays

#

data file = "bcs 2018.txt"
reg0 = 56

regl = 87

lat0 = np.empty([reg0] , dtype=np.floatb64)
lon0 = np.empty([reg0] , dtype=np.float64)

latl = np.empty([regl] , dtype=np.float64)
lonl = np.empty([regl] , dtype=np.float64)

f=open (data file)

for 1 in range (0,reg0):
line=f.readline ()
latO[i]=(float) (1line[0:7])
lonO[i]=(float) (1line[11:18])

print(" {0:7.2f} ".format (latO[i]))

print(" {0:7.2f} ".format (lonO[i]))

for i in range (0,regl):
line=f.readline ()
latl[i]=(float) (1line[0:7])
lonl[i]=(float) (1line[11:18])

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 347

print " {0:7.2f} ".format (latl[i])
print " {0:7.2f} ".format (lonl[i])

X, y = lon0,1lat0

plt.figure(figsize=(30,50))

ax = plt.axes (projection=ccrs.0SGB())

#ax.stock img ()

ax.set title("Current (red) and retired (green) BCS members")
ax.coastlines (resolution="'10m")

ax.scatter (x,vy,16,marker="'0o"',color="'green', trans-
form=ccrs.PlateCarree())

x, y = lonl,latl

ax.scatter (x,vy,16,marker="'o"',color="red’ , trans-
form=ccrs.PlateCarree())
plt.show ()

Ian D Chivers Chapter 26

348 Graphics plotting in Python using matplotlib

Here is the plot.

Current (red) and retired (green) BCS members

)

Note that the UK outline is just a skeleton.

Chapter 26 Ian D Chivers

Graphics plotting in Python using matplotlib 349

26.13 Bibliography
26.13.1 Python

The on line documentation is good, especially the examples. Here are some other books and
sources.

e Python Data Analytics, Fabio Nelli, Apress. This has a chapter on matplotlib.
The book is available as an ebook through Springer. As a Springer author I got a
discount :-).
26.13.2 Cartopy

Cartopy, Met Office, Cartopy: A cartographic python library with a Matplotlib interface,
2010-2015, Exexter, Devon.

http://scitools.org.uk/cartopy.

26.13.3 Map data

Visit
https://scitools.org.uk/cartopy/docs/latest/cita-
tion.html#data-copyright-table

for complete information.

OpenSteetMap: Copyright OpenStreetMap

Natural Earth raster and vector map data: Made with Natural Earth.

26.13.4 UNEP
UNEP, Environmental Data Report, Second Edition, ISBN 0-631-16987-3, 1989.
UNEP, Environmental Data Report, Third Edition, ISBN 0-631-18083-4, 1991.

26.14 Problems

1. Run the examples in this chapter.

Ian D Chivers Chapter 26

350 Graphics plotting in Python using matplotlib

2. Using the earthquake data from an earlier chapter plot a map of earthquakes. In the first
instance just do a plot of all of the earthquakes. Here is an example plot.

Earthquake plots - 2776 total

When you have successfully done this break down the plots by magnitude, using a different
colour for each magnitude range.

If you feeling particularly adventurous do a plot by number of deaths.

Chapter 26 Ian D Chivers

Python performance versus other programming languages 351

27 Python performance versus other
programming languages

27.1 Introduction

In this chapter we look at comparing the timing of Python against some other languages, in-
cluding Fortran, C++ and Java.

27.2 Example 1 - Python solution

Here is the source.

import numpy as np
import time

def main() :

print (" Program starts ",end=" ")
print (time.ctime () ,end=" ")
tl=time.time ()

print (tl)

n = 100000000

X = np.empty([n],dtype=np.float64)
t2=time.time ()

print (" Create empty array ",end=" ")
print (time.ctime(),end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2
for i in range(0,n):
x[1]=1.0

t2=time.time ()

print (" Initalise the array ",end=" ")
print (time.ctime(),end=" ")

print (" {0:3.6f} ".format (t2-tl))
tl=t2

array sum = sum(x)

t2=time.time ()

print (" Sum the array ",end=" ")
print (time.ctime(),end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

print (" Sum = ",end=" ")

print (array sum)

print (" Program ends ",end=" ")
print (time.ctime () ,end=" ")
t2=time.time ()

print (t2)

Ian D Chivers Chapter 27

352 Python performance versus other programming languages

if (__name == " main_ "):
main ()

Timing details are at the end of the chapter.

27.3 Example 2 - Fortran solution
Here is the source.

module timing module

implicit none

integer, dimension (8), private :: dt
real, private :: h, m, s, ms, tt
real, private :: last tt

contains

subroutine start timing()
implicit none

call date and time (values=dt)
print 100, dt(1:3), dt(5:8)
h = real(dt(5))
m real (dt (6))
S real (dt (7))
ms = real (dt(8))
last tt = 60*(60*h+m) + s + ms/1000.0
100 format (1x, 14, '/', 12, ‘'/', i2, 1x, i2, ':', iz,
i2, 1x, 1i3)
end subroutine start timing

subroutine end timing ()
implicit none

call date and time (values=dt)
print 100, dt(1:3), dt(5:8)
100 format (1x, 14, '/', iz, '/', i2, 1x, i2, ':', 1i2,
iz, 1x, 1i3)
end subroutine end timing

real function time difference ()
implicit none

tt = 0.0

call date and time (values=dt)
h = real(dt(5))
m real (dt (6))
S real (dt (7))

ms = real (dt(8))

tt = 60*(60*h+m) + s + ms/1000.0

Chapter 27 Ian D Chivers

Python performance versus other programming languages 353

time difference = tt - last tt
last tt = tt
end function time difference

end module timing module

module precision module
implicit none

integer, parameter :: sp = selected real kind(6, 37)
integer, parameter :: dp = selected real kind(15, 307)
integer, parameter :: gp = selected real kind(30, 291)

end module precision module

program array sum

use timing module

use precision module, wp => dp
implicit none

integer , parameter :: n=100000000
real (wp) ,dimension(n) :: X
real (wp) :: x_sum

call start timing()

x=1.0_wp

print *," array initialisation ",time difference ()
X _sum=sum (x)
print *," array summation ",time difference ()
print *,x sum
call end timing()

end program array sum

27.4 Example 3 - C++ solution
Here is a C++ solution.

#include <iostream>
#include <cassert>
#include <chrono>
#include <string>
#include <cstdlib>

using namespace std;

class timer

{
public:
timer () : start timing(hi res clock::now()) {}

vold reset ()

{

start timing = hi res clock::now();

Ian D Chivers Chapter 27

354 Python performance versus other programming languages

double elapsed() const
{
return (std::chrono::duration cast<second >
(hi res clock::now() - start timing).count());

private:

typedef std::chrono::high resolution clock hi res clock;
typedef std::chrono::duration<double, std::ratio<l> >
second ;

std::chrono::time point<hi res clock> start timing;

}i

void print time (const string & heading , const double & t)
{

cout << heading << " : " ;

cout.setf (ios::right);

cout.setf (ios::showpoint) ;

cout.setf (ios::fixed);

cout.width (10);

cout.precision (6) ;

cout << t << endl;

int main()

{

string heading;

double t;

timer timer O01;

timer timer 02;

heading = "\n Program starts ",
t=timer Ol.elapsed();

print time(heading , t);

cout << endl;

constexpr int n=100000000;
int 1 ;

double x sum=0.0;

double * x;

heading = " Array allocation ";

x = new double[n];

for (1=0;1 < n ; ++1)

Chapter 27 Ian D Chivers

Python performance versus other programming languages

t=timer Ol.elapsed();
print time (heading , t);
timer Ol.reset();

heading = " Array summation ";

for (1=0;1 < n ; ++1)
{

X sum += x[1];

t=timer Ol.elapsed();
print time (heading , t);
timer Ol.reset();

cout << " \n Sum = " ;
cout.width (12);
cout.precision(2);
cout.setf (ios::right);
cout.setf (ios::showpoint) ;
cout.setf (ios::fixed);

cout << x sum << endl;
t=timer 0O2.elapsed();
heading = "\n Total time "

print time (heading , t);

return (0) ;

27.5 Example 4 - Java solution

Here is the source and timing information.

import java.time.LocalDateTime;

class ch2704

public static void main(String[] args)

{
System.out.print (" Program starts ");
LocalDateTime t = LocalDateTime.now() ;

System.out.println(t.toString())

final int n=100000000;
double x sum=0.0;

Ian D Chivers

355

Chapter 27

356

double[]

x=new double[n];

System.out.print (" Allocation
t = LocalDateTime.now () ;
System.out.println(t.toString());

int 1

for

4

(1i=0;1 < n

; ++1)

System.out.print (" Assignment
t = LocalDateTime.now () ;
System.out.println(t.toString());

for

{

(1i=0;1 < n

; ++1)

X _sum += x[1i];

}

System.out.print ("

Summation

t = LocalDateTime.now();
System.out.println(t.toString());
System.out.println (x_ sum);

}

27.6 Summary

Here is a summary of the timing. All runs were on the same system.

Python performance versus other programming languages

Python Fortran C++ Java
Nag Intel Microsoft | g++
3.6.5 6.2 19 17.x 7.3.0 1.8.0 131
Initialisation | 12.314372 | 0.433094 | 0.589469 | 0.394777 | 0.420932 | 0.609000
Summation | 14.283259 | 0.125000 | 0.132813 | 0.148464 |0.158285 | 0.164000
Total 26.597631 | 0.558094 |0.722282 |0.543241 |0.579217 |0.773000
Percentage 2.10% 2.72% 2.04% 2.18% 2.91%

Chapter 27

Ian D Chivers

Python performance versus other programming languages 357

The percentage figures refer to the run time as a percentage of the Python run time. Python
is not the quickest!

27.7 Problems
1. Run the examples in this chapter. What timing figures did you get?

Ian D Chivers Chapter 27

358 Calling the Nag library from Python

28 Calling the Nag library from Python

28.1 Introduction
In this chapter we look at calling the Nag library from Python.
Here is the Nag base url.

https://www.nag.com/numeric/py/
nagdoc latest/readme.html#installing-using-pip

Here is a summary of the installation steps on one of my systems.

python -m pip install --upgrade pip

python -m pip install msgpack

python -m pip install --extra-index-url
https://www.nag.com/downloads/py/naginterfaces mkl
naginterfaces

Nag suggest using
python -m pydoc naginterfaces
to test the implementation. This produced the following output.

Help on package naginterfaces:

NAME
naginterfaces

DESCRIPTION
Package Summary
Python interfaces for the NAG Library Engine, which is
the
software implementation of NAG's collection of several
hundred mathematical and statistical routines serving a
diverse range of application areas.

Subpackage Summary

Interfaces to the NAG Library are provided in the
:mod: ~naginterfaces.library’

subpackage.

The °~ “base.utils °~ submodule contains a number of core
utilities for

working with the supplied Library interfaces. See the
documentation

for the :mod: ~naginterfaces.base’ subpackage for more
information.

Some utilities for interacting with the NAG Kusari

licence-management
system are in a :mod: ~naginterfaces.kusari® submodule.

Chapter 28 Ian D Chivers

Calling the Nag library from Python 359

Submodules must be imported separately:
>>> from naginterfaces.library import opt, roots

-- More --

The next step is to get a licence. Running

python -m naginterfaces.kusari

brings up a gui form, which generates the information that Nag require to provide a key.
Batch files can be found on the Rhymney Consulting site that help with the install.

28.2 Example 1 - testing the Nag library calls

Here is a test program from the Nag documentation.

from naginterfaces.library.opt import bounds bobyga func
rosen = lambda x: (sum(l00.0* (x[1l:]-x[:-11**2.0)**2.0 +
(1.0-x[:=1])**2.0))

import numpy as np; x = np.array([l1.2, 1.0, 1.2, 1.0])
n = len(x)

bl, bu = ([0.0]*n, [2.0]*n)

npt = 2*n + 1

rhobeg, rhoend = (le-1, 1le-6)

maxcal = 500

x min, f, nf = bounds bobyga func

(rosen, npt, x, bl, bu, rhobeg, rhoend, maxcal,)

print ('Function wvalue at lowest point found is
{:.5f}.".format (f))

print ('The objective function was called

{:d} times.'.format (nf))
print ('The corresponding x is
(" + ', '".Join(['{:.4f}'] * n).format(*x min) + ').")

Here is the output.

(base) C:\document\python\examples>
python -m naginterfaces.kusari

(base) C:\document\python\examples>

(base) C:\document\python\examples>python nag Ol.py

Function value at lowest point found is 0.00000.

The objective function was called 143 times.

The corresponding x is (1.0000, 1.0000, 1.0000, 1.0000).
which illustrates that the installation has worked.

A downloadable archive of the Library Manual to accompany this release can be found at

https://www.nag.com/numeric/fl/nagdoc_26.2/nagdoc_26.2.zip
We will be using the documentation in the course.

Ian D Chivers Chapter 28

https://www.nag.com/numeric/fl/nagdoc_26.2/nagdoc_26.2.zip

360 Calling the Nag library from Python

28.3 Example 2 - testing the Python random number generators

In this example we test the precision to which the random number generators work. Here is
the source.

import random
import numpy as np
import time

def main () :

print (" Program starts ",end=" ")
print (time.ctime())

print (type (random.random()))
print (type (np.random.random()))

if (_name == " main "):
main ()

Here is the output from a Windows system.

Program starts Tue Oct 2 11:11:49 2018
<class 'float'>
<class 'float'>

Float is normally IEEE double.
28.4 Example 3 - Python native timing

In this example we look at timing random number generation and sorting with Python. Here
is the source.

import random
import numpy as np
import time

def main() :
print (" Program starts " end=" ")
print (time.ctime () ,end=" ")
tl=time.time ()
print (tl)

set n to suit your system

n = 100000000
X = np.empty([n],dtype=np.float64d)

print (type (x))
print (type (x[11))

print (type(random.random()))

t2=time.time ()

Chapter 28 Ian D Chivers

Calling the Nag library from Python 361

print (" Create empty array ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

for i in range (0,n):
x[1] = random.random() # Random
float x, 0.0 <= x < 1.0

t2=time.time ()

print (" Set array to random values ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

for i in range(0,5):
print (" {0:20.16f} ".format(x[i]))

temp = np.empty([n],dtype=np.float6d)

t2=time.time ()

print (" Create temporary array ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

temp = np.sort(x)

t2=time.time ()

print (" Numpy sort method ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

for i in range((n-5),n):
print (" {0:20.16f} ".format (temp[i]))
if (__name == " main_ "):
main ()

Here is some sample output.

Program starts Sat Oct 6 11:41:38 2018
1538822498.7798429
<class 'numpy.ndarray'>
<class 'numpy.float64d'>
<class 'float'>

Create empty array Sat Oct 6 11:41:38 2018
0.001497

Ian D Chivers Chapter 28

362 Calling the Nag library from Python

Set array to random values Sat Oct 6 11:42:02 2018
23.880204
0.6783614879021483
0.2778128395928219
0.4947912341740682
0.7813040366914789
0.2953368493077114
Create temporary array Sat Oct 6 11:42:02 2018
0.002001
Numpy sort method Sat Oct 6 11:42:15 2018
12.380830
.9999999307082369
.9999999564000758
.9999999747624113
.9999999766293831
.999999998143773

O O O O O

In the next example we will look at calling the Nag library routines for generating the ran-
dom numbers and sorting.

28.5 Example 4 - Nag timing

In this example we look at using routines from the Nag library. Here is the program source.
import random

import numpy as np

import time

from naginterfaces.library.sort import realvec sort

from naginterfaces.library.rand import init nonrepeat

from naginterfaces.library.rand import dist uniformOl

def main () :

print (" Program starts " end=" ")
print (time.ctime () ,end=" ")

tl=time.time ()

print (tl)

set n to suit your system

n = 100000000
x = np.empty([n],dtype=np.float64)

t2=time.time ()

print (" Create empty array ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

genid =1 # Nag basic genera-
tor

statecomm = init nonrepeat (genid)

Chapter 28 Ian D Chivers

Calling the Nag library from Python 363

x = dist uniformOl (n, statecomm)

print (type(x))
print (type(x[1]))

for i in range(0,5):
print (" {0:20.16f} ".format(x[1i]))

t2=time.time ()

print (" Set array to random values ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

temp = np.empty([n],dtype=np.float6d)

t2=time.time ()

print (" Create temporary array ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

temp = np.sort (x)

t2=time.time ()

print (" Numpy sort method ",end=" ")
print (time.ctime(),end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

for i in range((n-5),n):
print (" {0:20.16f} ".format (temp[i]))

order = 'A'
temp = realvec sort(x,1,order)

t2=time.time ()

print (" Nag sort method ",end=" ")
print (time.ctime () ,end=" ")

print (" {0:3.6f} ".format (t2-tl))

tl=t2

for i in range((n-5),n):
print (" {0:20.16f} ".format (temp[i]))

if (__name == " main_ "):

main ()
Here is a sample run.

Ian D Chivers Chapter 28

364 Calling the Nag library from Python

Program starts
1538822669.644663
Create empty array
0.002000
<class 'numpy.ndarray'>
<class 'numpy.float64d'>
0.5042501560547314
0.9779543443423764
0.1287328480622457
0.9849552600053949
0.2424051132344787

Sat Oct 6 11:44:29 2018

Sat Oct 6 11:44:29 2018

Set array to random values Sat Oct 6 11:44:31 2018

1.474478
Create temporary array
0.002003
Numpy sort method
12.350846
0.9999999580795395
0.9999999603659318
0.9999999628400260
0.9999999707114384
0.9999999957634748
Nag sort method
12.998827
.9999999580795395
.9999999603659318
.9999999628400260
.9999999707114384
0.9999999957634748

O O O O

Sat Oct 6 11:44:31 2018

Sat Oct 6 11:44:43 2018

Sat Oct 6 11:44:56 2018

Note the improvement with the Nag random number timing.

So this example shows how easy it is to call the Nag library from Python.

28.6 Problems

1. Run the examples in this chapter. What timing figures did you get?

Chapter 28

Ian D Chivers

Functional programming background 365

29 Functional programming
background

29.1 Introduction

In this chapter we provide a background to functional programming. The following infor-
mation is taken from the Wikipedia entry.

https://en.wikipedia.org/wiki/Functional programming

29.2 Background

In computer science, functional programming is a programming paradigm—a style of build-
ing the structure and elements of computer programs—that treats computation as the evalu-
ation of mathematical functions and avoids changing-state and mutable data. It is a declara-
tive programming paradigm, which means programming is done with expressions. In func-
tional code, the output value of a function depends only on the arguments that are input to
the function, so calling a function f twice with the same value for an argument x will pro-
duce the same result f(x) each time. Eliminating side effects, i.e. changes in state that do
not depend on the function inputs, can make it much easier to understand and predict the
behavior of a program, which is one of the key motivations for the development of
functional programming.

Functional programming has its roots in lambda calculus, a formal system developed in the
1930s to investigate computability, the Entscheidungsproblem, function definition, function
application, and recursion. Many functional programming languages can be viewed as elab-
orations on the lambda calculus. Another well-known declarative programming paradigm,
logic programming, is based on relations.[1]

In contrast, imperative programming changes state with commands in the source language,
the most simple example being assignment. Imperative programming does have func-
tions—not in the mathematical sense—but in the sense of subroutines. They can have side
effects that may change the value of program state. Functions without return values there-
fore make sense. Because of this, they lack referential transparency, i.e. the same language
expression can result in different values at different times depending on the state of the exe-
cuting program.[1]

Functional programming languages, especially purely functional ones such as Hope and
Rex, have largely been emphasized in academia rather than in commercial software devel-
opment. However, prominent programming languages which support functional program-
ming such as Common Lisp, Scheme, [2] [3] [4] [5] Clojure, [6] [7] Wolfram Language [8]
(also known as Mathematica), Racket, [9] Erlang, [10] [11] [12] OCaml, [13] [14] Haskell,
[15] [16] and F#[17] [18] have been used in industrial and commercial applications by a
wide variety of organizations. Functional programming is also supported in some do-
main-specific programming languages like R (statistics), [19] J, K and Q from Kx Systems
(financial analysis), XQuery/XSLT (XML), [20] [21] and Opal.[22] Widespread do-
main-specific declarative languages like SQL and Lex/Yacc use some elements of func-
tional programming, especially in eschewing mutable values.[23]

Programming in a functional style can also be accomplished in languages that are not spe-
cifically designed for functional programming. For example, the imperative Perl program-
ming language has been the subject of a book describing how to apply functional program-
ming concepts.[24] This is also true of the PHP programming language.[25] C# 3.0 and
Java 8 added constructs to facilitate the functional style. The Julia language also offers

Ian D Chivers Chapter 29

366 Functional programming background

functional programming abilities. An interesting case is that of Scala[26] — it is frequently
written in a functional style, but the presence of side effects and mutable state place it in a
grey area between imperative and functional languages.

29.3 History

Lambda calculus provides a theoretical framework for describing functions and their evalu-
ation. Although it is a mathematical abstraction rather than a programming language, it
forms the basis of almost all functional programming languages today. An equivalent theo-
retical formulation, combinatory logic, is commonly perceived as more abstract than lambda
calculus and preceded it in invention. Combinatory logic and lambda calculus were both
originally developed to achieve a clearer approach to the foundations of mathematics.[27]

An early functional-flavored language was Lisp, developed by John McCarthy while at
Massachusetts Institute of Technology (MIT) for the IBM 700/7000 series scientific com-
puters in the late 1950s.[28] Lisp introduced many features now found in functional lan-
guages, though Lisp is technically a multi-paradigm language. Scheme and Dylan were later
attempts to simplify and improve Lisp.

Information Processing Language (IPL) is sometimes cited as the first computer-based func-
tional programming language.[29] It is an assembly-style language for manipulating lists of
symbols. It does have a notion of "generator", which amounts to a function accepting a
function as an argument, and, since it is an assembly-level language, code can be used as
data, so IPL can be regarded as having higher-order functions. However, it relies heavily on
mutating list structure and similar imperative features.

Kenneth E. Iverson developed APL in the early 1960s, described in his 1962 book A Pro-
gramming Language (ISBN 9780471430148). APL was the primary influence on John
Backus's FP. In the early 1990s, Iverson and Roger Hui created J. In the mid-1990s, Arthur
Whitney, who had previously worked with Iverson, created K, which is used commercially
in financial industries along with its descendant Q.

John Backus presented FP in his 1977 Turing Award lecture "Can Programming Be Liber-
ated From the von Neumann Style? A Functional Style and its Algebra of Programs".[30]
He defines functional programs as being built up in a hierarchical way by means of "com-
bining forms" that allow an "algebra of programs"; in modern language, this means that
functional programs follow the principle of compositionality. Backus's paper popularized re-
search into functional programming, though it emphasized function-level programming
rather than the lambda-calculus style which has come to be associated with functional pro-
gramming.

In the 1970s, ML was created by Robin Milner at the University of Edinburgh, and David
Turner initially developed the language SASL at the University of St. Andrews and later the
language Miranda at the University of Kent. Also in Edinburgh in the 1970s, Burstall and
Darlington developed the functional language NPL.[31] NPL was based on Kleene Re-
cursion Equations and was first introduced in their work on program transformation.[32]
Burstall, MacQueen and Sannella then incorporated the polymorphic type checking from
ML to produce the language Hope.[33] ML eventually developed into several dialects, the
most common of which are now OCaml and Standard ML. Meanwhile, the development of
Scheme (a partly functional dialect of Lisp), as described in the influential Lambda Papers
and the 1985 textbook Structure and Interpretation of Computer Programs, brought aware-
ness of the power of functional programming to the wider programming-languages commu-
nity.

Chapter 29 Ian D Chivers

Functional programming background 367

In the 1980s, Per Martin-L6f developed intuitionistic type theory (also called constructive
type theory), which associated functional programs with constructive proofs of arbitrarily
complex mathematical propositions expressed as dependent types. This led to powerful new
approaches to interactive theorem proving and has influenced the development of many
subsequent functional programming languages.

The Haskell language began with a consensus in 1987 to form an open standard for func-
tional programming research; implementation releases have been ongoing since 1990.

29.4 Concepts

A number of concepts and paradigms are specific to functional programming, and generally
foreign to imperative programming (including object-oriented programming). However, pro-
gramming languages are often hybrids of several programming paradigms, so programmers
using "mostly imperative" languages may have utilized some of these concepts.[34]

29.4.1 First-class and higher-order functions

Higher-order functions are functions that can either take other functions as arguments or re-
turn them as results. In calculus, an example of a higher-order function is the differential
operator d/dx, which returns the derivative of a function f.

Higher-order functions are closely related to first-class functions in that higher-order func-
tions and first-class functions both allow functions as arguments and results of other func-
tions. The distinction between the two is subtle: "higher-order" describes a mathematical
concept of functions that operate on other functions, while "first-class" is a computer sci-
ence term that describes programming language entities that have no restriction on their use
(thus first-class functions can appear anywhere in the program that other first-class entities
like numbers can, including as arguments to other functions and as their return values).

Higher-order functions enable partial application or currying, a technique in which a func-
tion is applied to its arguments one at a time, with each application returning a new func-
tion that accepts the next argument. This allows one to succinctly express, for example, the
successor function as the addition operator partially applied to the natural number one.

29.4.2 Pure functions

Purely functional functions (or expressions) have no side effects (memory or 1/O). This
means that pure functions have several useful properties, many of which can be used to op-
timize the code:

If the result of a pure expression is not used, it can be removed without affecting other ex-
pressions.

If a pure function is called with arguments that cause no side-effects, the result is constant
with respect to that argument list (sometimes called referential transparency), i.e. if the pure
function is again called with the same arguments, the same result will be returned (this can
enable caching optimizations such as memoization).

If there is no data dependency between two pure expressions, then their order can be re-
versed, or they can be performed in parallel and they cannot interfere with one another (in
other terms, the evaluation of any pure expression is thread-safe).

If the entire language does not allow side-effects, then any evaluation strategy can be used;
this gives the compiler freedom to reorder or combine the evaluation of expressions in a
program (for example, using deforestation).

While most compilers for imperative programming languages detect pure functions and per-
form common-subexpression elimination for pure function calls, they cannot always do this
for pre-compiled libraries, which generally do not expose this information, thus preventing

Ian D Chivers Chapter 29

368 Functional programming background

optimizations that involve those external functions. Some compilers, such as gcc, add extra
keywords for a programmer to explicitly mark external functions as pure, to enable such
optimizations. Fortran 95 also allows functions to be designated "pure".

29.4.3 Recursion

Iteration (looping) in functional languages is usually accomplished via recursion. Recursive
functions invoke themselves, allowing an operation to be performed over and over until the
base case is reached. Though some recursion requires maintaining a stack, tail recursion can
be recognized and optimized by a compiler into the same code used to implement iteration
in imperative languages. The Scheme language standard requires implementations to recog-
nize and optimize tail recursion. Tail recursion optimization can be implemented by trans-
forming the program into continuation passing style during compiling, among other
approaches.

Common patterns of recursion can be factored out using higher order functions, with
catamorphisms and anamorphisms (or "folds" and "unfolds") being the most obvious exam-
ples. Such higher order functions play a role analogous to built-in control structures such as
loops in imperative languages.

Most general purpose functional programming languages allow unrestricted recursion and
are Turing complete, which makes the halting problem undecidable, can cause unsoundness
of equational reasoning, and generally requires the introduction of inconsistency into the
logic expressed by the language's type system. Some special purpose languages such as Coq
allow only well-founded recursion and are strongly normalizing (nonterminating computa-
tions can be expressed only with infinite streams of values called codata). As a conse-
quence, these languages fail to be Turing complete and expressing certain functions in them
is impossible, but they can still express a wide class of interesting computations while
avoiding the problems introduced by unrestricted recursion. Functional programming lim-
ited to well-founded recursion with a few other constraints is called total functional pro-
gramming.[35]

29.4.4 Strict versus non-strict evaluation

Functional languages can be categorized by whether they use strict (eager) or non-strict
(lazy) evaluation, concepts that refer to how function arguments are processed when an ex-
pression is being evaluated. The technical difference is in the denotational semantics of ex-
pressions containing failing or divergent computations. Under strict evaluation, the evalua-
tion of any term containing a failing subterm will itself fail. For example, the expression:
print length([2+1, 3*2, 1/0, 5-4])

will fail under strict evaluation because of the division by zero in the third element of the
list. Under lazy evaluation, the length function will return the value 4 (i.e., the number of
items in the list), since evaluating it will not attempt to evaluate the terms making up the
list. In brief, strict evaluation always fully evaluates function arguments before invoking the
function. Lazy evaluation does not evaluate function arguments unless their values are re-
quired to evaluate the function call itself.

The usual implementation strategy for lazy evaluation in functional languages is graph re-
duction.[36] Lazy evaluation is used by default in several pure functional languages, includ-
ing Miranda, Clean, and Haskell.

Hughes 1984 argues for lazy evaluation as a mechanism for improving program modularity
through separation of concerns, by easing independent implementation of producers and
consumers of data streams.[37] Launchbury 1993 describes some difficulties that lazy eval-
uation introduces, particularly in analyzing a program's storage requirements, and proposes

Chapter 29 Ian D Chivers

Functional programming background 369

an operational semantics to aid in such analysis.[38] Harper 2009 proposes including both
strict and lazy evaluation in the same language, using the language's type system to distin-
guish them.[39]

2945 Type systems

Especially since the development of Hindley—Milner type inference in the 1970s, functional
programming languages have tended to use typed lambda calculus, as opposed to the
untyped lambda calculus used in Lisp and its variants (such as Scheme). The use of alge-
braic datatypes and pattern matching makes manipulation of complex data structures conve-
nient and expressive; the presence of strong compile-time type checking makes programs
more reliable, while type inference frees the programmer from the need to manually declare
types to the compiler.

Some research-oriented functional languages such as Coq, Agda, Cayenne, and Epigram are
based on intuitionistic type theory, which allows types to depend on terms. Such types are
called dependent types. These type systems do not have decidable type inference and are
difficult to understand and program with[citation needed]. But dependent types can express
arbitrary propositions in predicate logic. Through the Curry—Howard isomorphism, then,
well-typed programs in these languages become a means of writing formal mathematical
proofs from which a compiler can generate certified code. While these languages are mainly
of interest in academic research (including in formalized mathematics), they have begun to
be used in engineering as well. Compcert is a compiler for a subset of the C programming
language that is written in Coq and formally verified.[40]

A limited form of dependent types called generalized algebraic data types (GADT's) can be
implemented in a way that provides some of the benefits of dependently typed program-
ming while avoiding most of its inconvenience.[41] GADT's are available in the Glasgow
Haskell Compiler, in OCaml (since version 4.00) and in Scala (as "case classes"), and have
been proposed as additions to other languages including Java and C#.[42]

29.4.6 Referential Transparency

Functional programs do not have assignment statements, that is, the value of a variable in a
functional program never changes once defined. This eliminates any chances of side effects
because any variable can be replaced with its actual value at any point of execution. So,
functional programs are referentially transparent. [43]

Consider C assignment statement x = x * 10, this changes the value assigned to the variable
x. Let us say that the initial value of x was 10, then two consecutive evaluations of the vari-
able x will yield 10 and 100 respectively. Clearly, replacing x = x * 10 with either 10 or
100 gives a program with different meaning, and so the expression is not referentially trans-
parent. In fact, assignment statements are never referentially transparent.

Now, consider another function such as int plusone(int x) {return x+1;} is transparent, as it
will not implicitly change the input x and thus has no such side effects. Functional pro-
grams exclusively use this type of function and are therefore referentially transparent.

29.4.7 Functional programming in non-functional languages

It is possible to use a functional style of programming in languages that are not traditionally
considered functional languages.[44] For example, both D and Fortran 95 explicitly support
pure functions.[45]

JavaScript, Lua[46] and Python had first class functions from their inception.[47] Amrit

Prem added support to Python for "lambda", "map", "reduce", and "filter" in 1994, as well
as closures in Python 2.2, [48] though Python 3 relegated "reduce" to the functools standard

Ian D Chivers Chapter 29

370 Functional programming background

library module.[49] First-class functions have been introduced into other mainstream lan-
guages such as PHP 5.3, Visual Basic 9, C# 3.0, and C++11.[citation needed]

In Java, anonymous classes can sometimes be used to simulate closures; [50] however,
anonymous classes are not always proper replacements to closures because they have more
limited capabilities. [51] Java 8 supports lambda expressions as a replacement for some
anonymous classes. [52] However, the presence of checked exceptions in Java can make
functional programming inconvenient, because it can be necessary to catch checked excep-
tions and then rethrow them—a problem that does not occur in other JVM languages that
do not have checked exceptions, such as Scala.[citation needed]

In C#, anonymous classes are not necessary, because closures and lambdas are fully sup-
ported. Libraries and language extensions for immutable data structures are being developed
to aid programming in the functional style in C#.

Many object-oriented design patterns are expressible in functional programming terms: for
example, the strategy pattern simply dictates use of a higher-order function, and the visitor
pattern roughly corresponds to a catamorphism, or fold.

Similarly, the idea of immutable data from functional programming is often included in im-
perative programming languages, [53] for example the tuple in Python, which is an
immutable array.

29.5 Comparison to imperative programming

Functional programming is very different from imperative programming. The most signifi-
cant differences stem from the fact that functional programming avoids side effects, which
are used in imperative programming to implement state and I/O. Pure functional program-
ming completely prevents side-effects and provides referential transparency, which makes it
easier to verify, optimize, and parallelize programs, and easier to write automated tools to
perform those tasks.[citation needed]

Higher-order functions are rarely used in older imperative programming. A traditional im-
perative program might use a loop to traverse and modify a list. A functional program, on
the other hand, would probably use a higher-order “map” function that takes a function and
a list, generating and returning a new list by applying the function to each list item.

29.5.1 Simulating state

There are tasks (for example, maintaining a bank account balance) that often seem most
naturally implemented with state. Pure functional programming performs these tasks, and
I/O tasks such as accepting user input and printing to the screen, in a different way.

The pure functional programming language Haskell implements them using monads, de-
rived from category theory. Monads offer a way to abstract certain types of computational
patterns, including (but not limited to) modeling of computations with mutable state (and
other side effects such as I/0) in an imperative manner without losing purity. While existing
monads may be easy to apply in a program, given appropriate templates and examples,
many students find them difficult to understand conceptually, e.g., when asked to define
new monads (which is sometimes needed for certain types of libraries).[54]

Another way in which functional languages can simulate state is by passing around a data
structure that represents the current state as a parameter to function calls. On each function
call, a copy of this data structure is created with whatever differences are the result of the
function. This is referred to as 'state-passing style'.

Impure functional languages usually include a more direct method of managing mutable
state. Clojure, for example, uses managed references that can be updated by applying pure

Chapter 29 Ian D Chivers

Functional programming background 371

functions to the current state. This kind of approach enables mutability while still promot-
ing the use of pure functions as the preferred way to express computations.

Alternative methods such as Hoare logic and uniqueness have been developed to track side
effects in programs. Some modern research languages use effect systems to make the pres-
ence of side effects explicit.

29.5.2 Efficiency issues

Functional programming languages are typically less efficient in their use of CPU and
memory than imperative languages such as C and Pascal.[55] This is related to the fact that
some mutable data structures like arrays have a very straightforward implementation using
present hardware (which is a highly evolved Turing machine). Flat arrays may be accessed
very efficiently with deeply pipelined CPUs, prefetched efficiently through caches (with no
complex pointer-chasing), or handled with SIMD instructions. It is also not easy to create
their equally efficient general-purpose immutable counterparts. For purely functional lan-
guages, the worst-case slowdown is logarithmic in the number of memory cells used, be-
cause mutable memory can be represented by a purely functional data structure with loga-
rithmic access time (such as a balanced tree).[56] However, such slowdowns are not univer-
sal. For programs that perform intensive numerical computations, functional languages such
as OCaml and Clean are only slightly slower than C.[57] For programs that handle large
matrices and multidimensional databases, array functional languages (such as J and K) were
designed with speed optimizations.

Immutability of data can in many cases lead to execution efficiency by allowing the com-
piler to make assumptions that are unsafe in an imperative language, thus increasing oppor-
tunities for inline expansion.[58]

Lazy evaluation may also speed up the program, even asymptotically, whereas it may slow
it down at most by a constant factor (however, it may introduce memory leaks if used im-
properly). Launchbury 1993[38] discusses theoretical issues related to memory leaks from
lazy evaluation, and O'Sullivan et al. 2008[59] give some practical advice for analyzing and
fixing them. However, the most general implementations of lazy evaluation making exten-
sive use of dereferenced code and data perform poorly on modern processors with deep
pipelines and multi-level caches (where a cache miss may cost hundreds of cycles)[citation
needed].

29.5.3 Coding styles

Imperative programs tend to emphasize the series of steps taken by a program in carrying
out an action, while functional programs tend to emphasize the composition and arrange-
ment of functions, often without specifying explicit steps. A simple example illustrates this
with two solutions to the same programming goal (calculating Fibonacci numbers). The
imperative example is in Python. Working versions of these Python programs can be found
in the functions chapter.

29.5.3.1 Version 1 — With Generators
Fibonacci numbers, imperative style
https://docs.python.org/2.7/tutorial/modules.html
def fibonacci(n, first=0, second=1):
for i1 in range(n):
yield first # Return current iteration
first, second = second, first + second

Ian D Chivers Chapter 29

372 Functional programming background

print [x for x in fibonacci(10)]
29.5.3.2 Version 2 — lterative
def fibonacci(n):
first, second = 0, 1
for i1 in range(n):
print first # Print current iteration
first, second = second, first + second #Calculate next values

fibonacci(10)
29.5.3.3 Version 3 — Recursive
def fibonacci(n, first=0, second=1):
ifn==1:
return [first]
else:

return [first] + fibonacci(n - 1, second, first + second)

print fibonacci(10)

29.5.3.4 Haskell

A functional version (in Haskell) has a different feel to it[vague]:
-- Fibonacci numbers, functional style

-- describe an infinite list based on the recurrence relation for Fibonacci numbers

fibRecurrence first second = first : fibRecurrence second (first + second)

-- describe fibonacci list as fibRecurrence with initial values 0 and 1

fibonacci = fibRecurrence 0 1

-- describe action to print the 10th element of the fibonacci list
main = print (fibonacci !! 10)

Or, more concisely:

fibonacci2 = 0:1:zipWith (+) fibonacci2 (tail fibonacci2)

The imperative style describes the intermediate steps involved in calculating fibonacci(N),
and places those steps inside a loop statement. In contrast, the functional implementation
shown here states the mathematical recurrence relation that defines the entire Fibonacci se-
quence, then selects an element from the sequence (see also recursion). This example relies
on Haskell's lazy evaluation to create an "infinite" list of which only as much as needed
(the first 10 elements in this case) will actually be computed. That computation happens

when the runtime system carries out the action described by "main".
29.5.3.5 Erlang

The same program in Erlang provides a simple example of how functional languages in

general do not require their syntax to contain an "if" statement.
-module(fibonacci).
-export([start/1]).

%% Fibonacci numbers in Erlang

Chapter 29 Ian D Chivers

Functional programming background 373

start(N) -> do_fib(0, 1, N).

do fib(_, B, 1) > B;

do fib(A, B, N) > do fib(B, A+ B, N - 1).

This program is contained within a module called "fibonacci" and declares that the start/1
function will be visible from outside the scope of this module.

The function start/1 accepts a single parameter (as denoted by the "/1" syntax) and then
calls an internal function called do_fib/3.

In direct contrast to the imperative coding style, Erlang does not need an "if" statement be-
cause the Erlang runtime will examine the parameters being passed to a function, and call
the first function having a signature that matches the current pattern of parameters. (Erlang
syntax does provide an "if" statement, but it is considered syntactic sugar and, compared to
its usage in imperative languages, plays only a minor role in application logic design).

In this case, it is unnecessary to test for a parameter value within the body of the function
because such a test is implicitly performed by providing a set of function signatures that de-
scribe the different patterns of values that could be received by a function.

In the case above, the first version of do_fib/3 will only be called when the third parameter
has the precise value of 1. In all other cases, the second version of do_fib/3 will be called.

This example demonstrates that functional programming languages often implement condi-
tional logic implicitly by matching parameter patterns rather than explicitly by means of an
"if" statement.

29.5.3.6 Elixir

Elixir is a functional, concurrent, general-purpose programming language that runs on the
Erlang virtual machine (BEAM).

The Fibonacci function can be written in Elixir as follows:
defmodule Fibonacci do
def fib(0), do: 0
def fib(1), do: 1
def fib(n), do: fib(n-1) + fib(n-2)
end
29.5.3.7 Lisp
The Fibonacci function can be written in Common Lisp as follows:
(defun fib (n &optional (a 0) (b 1))
(if =n0)
a
(fib (- n 1) b (+ a b))
The program can then be called as
(fib 10)
29538 D
D has support for functional programming|clarification needed] [citation needed]:
import std.stdio;
import std.range;

void main()

Ian D Chivers Chapter 29

374 Functional programming background

/*'f" is a range representing the first 10 Fibonacci numbers */
auto f = recurrence!((seq, i) => seq[0] + seq[1])(0, 1)
.take(10);
writeln(f);
H
29539 R

R (programming language) is an environment for statistical computing and graphics. It is
also a functional programming language.

The Fibonacci function can be written in R as a recursive function as follows:
fib <- function(n) {

if(n<=2)1
else fib(n - 1) + fib(n - 2)
}

Or it can be written as a singly recursive function:
fib <- function(n,a=1,b=1) {

if(n==1)a
else fib(n-1,b,a+b)
H

Or it can be written as an iterative function:
fib <- function(n) {
ifn==1)1
elseif (n==2) 1
else {
fib<-c(1,1)
for (i in 3:n) fib<-c(0,fib[1])+fib[2]
fib[2]
}
H

The function can then be called as
fib(10)

29.6 Use in industry

Functional programming has long been popular in academia, but with few industrial appli-
cations.[60]:page 11 However, recently several prominent functional programming lan-
guages have been used in commercial or industrial systems. For example, the Erlang pro-
gramming language, which was developed by the Swedish company Ericsson in the late
1980s, was originally used to implement fault-tolerant telecommunications systems.[11] It
has since become popular for building a range of applications at companies such as T-Mo-
bile, Nortel, Facebook, Electricité de France and WhatsApp. [10] [12] [61] [62] [63] The
Scheme dialect of Lisp was used as the basis for several applications on early Apple
Macintosh computers, [2] [3] and has more recently been applied to problems such as train-
ing simulation software[4] and telescope control.[5] OCaml, which was introduced in the

Chapter 29 Ian D Chivers

Functional programming background 375

mid-1990s, has seen commercial use in areas such as financial analysis, [13] driver verifica-
tion, industrial robot programming, and static analysis of embedded software.[14] Haskell,
although initially intended as a research language, [16] has also been applied by a range of
companies, in areas such as aerospace systems, hardware design, and web program-
ming.[15] [16]

Other functional programming languages that have seen use in industry include Scala, [64]
F#, [17] [18] (both being functional-OO hybrids with support for both purely functional and
imperative programming) Wolfram Language, [8] Lisp, [65] Standard ML, [66] [67] and
Clojure.[68]

29.7 In education

Functional programming is being used as a method to teach problem solving, algebra and
geometric concepts.[69] It has also been used as a tool to teach classical mechanics in
Structure and Interpretation of Classical Mechanics.

Ian D Chivers Chapter 29

376 SQL background

Aims
This chapter provides a short background to SQL.

30 SQL background

This chapter provides a brief background to SQL. Most of the information is taken from the
Wikipedia entry. The Wikipedia entry is a good place to start. I have been using relational
database management software since working at Imperial College in the 1970s and 1980s.
One of the first relational systems was RIM (Relational Information Management), origi-
nally a NASA developed software package as part of the Space Shuttle project. We used the
CDC implementation at Imperial. We also used MicroRIM which was the first pc based re-
lational dbms. This is now available as Rbase. See the following site for more information.

http://www.rbase.com/

I have also used

e [BM's DB2
e OQracle
e MySQL

Most programmers will end up working with SQL at some point.

30.1 SQL background
The Wikipedia home page is:
https://en.wikipedia.org/wiki/SQL

Paradigm Multi-paradigm

Designed by Donald D. Chamberlin Raymond F. Boyce
Developer ISO/IEC

First appeared 1974

Stable release SQL:2011 /2011

Typing discipline Static, strong

oS Cross-platform

File formats File format details

Filename extension sql

Internet media type application/sql[1][2]

Developed by ISO/IEC

Initial release 1986

Latest release SQL:2011 (2011; 4 years ago)

Type of format Database Standard ISO/IEC 9075

Open format? Yes

Major implementations Many

Dialects SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2006,
SQL:2008, SQL:2011

Influenced by Datalog

Chapter 30 Ian D Chivers

SQL background 377

Influenced CQL, LINQ, SOQL, Windows PowerShell,[3] JPQL, jOOQ

SQL Structured Query Language is a special-purpose programming language designed for
managing data held in a relational database management system (RDBMS), or for stream
processing in a relational data stream management system (RDSMS).

Originally based upon relational algebra and tuple relational calculus, SQL consists of a
data definition language, data manipulation language, and a data control language. The
scope of SQL includes data insert, query, update and delete, schema creation and modifica-
tion, and data access control. Although SQL is often described as, and to a great extent is, a
declarative language (4GL), it also includes procedural elements.

SQL was one of the first commercial languages for Edgar F. Codd's relational model, as de-
scribed in his influential 1970 paper, "A Relational Model of Data for Large Shared Data
Banks."[10] Despite not entirely adhering to the relational model as described by Codd, it
became the most widely used database language.[11][12]

SQL became a standard of the American National Standards Institute (ANSI) in 1986, and
of the International Organization for Standardization (ISO) in 1987.[13] Since then, the
standard has been revised to include a larger set of features. Despite the existence of such
standards, though, most SQL code is not completely portable among different database
systems without adjustments. We have coverage below of the following:

e History

e Design

e Syntax: Language elements

e QOperators

e Queries: Subqueries

e Inline View

e Null or three-valued logic (3VL)
e Data manipulation

e Transaction controls

e Data definition

e Data types

e Data control

e Procedural extensions

e Interoperability and standardization
e Alternatives

e Distributed SQL processing

e See also

e Notes

e References

e External links

30.1.1 History

SQL was initially developed at IBM by Donald D. Chamberlin and Raymond F. Boyce in
the early 1970s.[14] This version, initially called SEQUEL (Structured English QUEry Lan-

Ian D Chivers Chapter 30

378 SQL background

guage), was designed to manipulate and retrieve data stored in IBM's original quasi-rela-
tional database management system, System R, which a group at IBM San Jose Research
Laboratory had developed during the 1970s.[14] The acronym SEQUEL was later changed
to SQL because "SEQUEL" was a trademark of the UK-based Hawker Siddeley aircraft
company.[15]

In the late 1970s, Relational Software, Inc. (now Oracle Corporation) saw the potential of
the concepts described by Codd, Chamberlin, and Boyce, and developed their own
SQL-based RDBMS with aspirations of selling it to the U.S. Navy, Central Intelligence
Agency, and other U.S. government agencies. In June 1979, Relational Software, Inc. intro-
duced the first commercially available implementation of SQL, Oracle V2 (Version2) for
VAX computers.

After testing SQL at customer test sites to determine the usefulness and practicality of the
system, IBM began developing commercial products based on their System R prototype in-
cluding System/38, SQL/DS, and DB2, which were commercially available in 1979, 1981,
and 1983, respectively.[16]

30.1.2 SQL online documentation
Visit
https://www.w3schools.com/sqgl/default.asp

for a free reference.

30.1.3 Design

SQL deviates in several ways from its theoretical foundation, the relational model and its
tuple calculus. In that model, a table is a set of tuples, while in SQL, tables and query re-
sults are lists of rows: the same row may occur multiple times, and the order of rows can be
employed in queries (e.g. in the LIMIT clause).

Critics argue that SQL should be replaced with a language that strictly returns to the origi-
nal foundation: for example, see The Third Manifesto.
30.1.4 Syntax
It has been suggested that this section be split into a new article titled SQL syntax. (Dis-
cuss) (June 2015)
30.1.5 Language elements
A chart showing several of the SQL language elements that compose a single statement
The SQL language is subdivided into several language elements, including:
e C(Clauses, which are constituent components of statements and queries. (In some
cases, these are optional.)[17]

e Expressions, which can produce either scalar values, or tables consisting of col-
umns and rows of data

e Predicates, which specify conditions that can be evaluated to SQL three-valued
logic (3VL) (true/false/unknown) or Boolean truth values and are used to limit
the effects of statements and queries, or to change program flow.

e Queries, which retrieve the data based on specific criteria. This is an important
element of SQL.

e Statements, which may have a persistent effect on schemata and data, or may
control transactions, program flow, connections, sessions, or diagnostics. SQL

Chapter 30 Ian D Chivers

SQL background 379

statements also include the semicolon (";") statement terminator. Though not re-
quired on every platform, it is defined as a standard part of the SQL grammar.

Insignificant whitespace is generally ignored in SQL statements and queries, making it eas-
ier to format SQL code for readability.

30.1.6 Operators

Operator Description Example

= Equal to Author = 'Alcott'

<> Not equal to (many DBMSs accept != in addition to <>) Dept <>
'Sales'

> Greater than Hire Date > '2012-01-31"

< Less than Bonus < 50000.00

>= Greater than or equal Dependents >= 2

<= Less than or equal Rate <= 0.05

BETWEEN Between an inclusive range
Cost BETWEEN 100.00 AND 500.00

LIKE Match a character pattern
First Name LIKE 'Will%'

IN Equal to one of multiple possible values
DeptCode IN (101, 103, 209)

IS or IS NOT Compare to null (missing data)
Address IS NOT NULL

IS NOT DISTINCT FROM
Is equal to value or both are nulls (missing data)
Debt IS NOT DISTINCT FROM - Receivables

AS Used to change a field name when viewing results
SELECT employee AS 'department]’

Other operators have at times been suggested and/or implemented, such as the skyline oper-
ator (for finding only those records that are not 'worse' than any others).

SQL has the case/when/then/else/end expression, which was introduced in SQL-92. In its
most general form, which is called a "searched case" in the SQL standard, it works like else
if in other programming languages:
CASE WHEN n > 0
THEN 'positive'
WHEN n < O
THEN 'negative'
ELSE 'zero'
END

Ian D Chivers Chapter 30

380 SQL background

SQL tests WHEN conditions in the order they appear in the source. If the source does not
specify an ELSE expression, SQL defaults to ELSE NULL. An abbreviated syntax—called
"simple case" in the SQL standard—mirrors switch statements:
CASE n WHEN 1
THEN 'one'
WHEN 2
THEN 'two'
ELSE 'I cannot count that high'
END
This syntax uses implicit equality comparisons, with the usual caveats for comparing with
NULL.

For the Oracle-SQL dialect, the latter can be shortened to an equivalent DECODE con-
struct:
SELECT DECODE(n, 1, 'one',

2, 'two',

'i cannot count that high')

FROM some table;
The last value is the default; if none is specified, it also defaults to NULL. However, unlike
the standard's "simple case", Oracle's DECODE considers two NULLs equal with each
other.[18]

30.1.7 Queries

The most common operation in SQL, the query, makes use of the declarative SELECT
statement. SELECT retrieves data from one or more tables, or expressions. Standard SE-
LECT statements have no persistent effects on the database. Some non-standard implemen-
tations of SELECT can have persistent effects, such as the SELECT INTO syntax provided
in some databases.[19]

Queries allow the user to describe desired data, leaving the database management system
(DBMS) to carry out planning, optimizing, and performing the physical operations neces-
sary to produce that result as it chooses.

A query includes a list of columns to include in the final result, normally immediately fol-
lowing the SELECT keyword. An asterisk ("*") can be used to specify that the query
should return all columns of the queried tables. SELECT is the most complex statement in
SQL, with optional keywords and clauses that include:

The FROM clause, which indicates the table(s) to retrieve data from. The FROM clause can
include optional JOIN subclauses to specify the rules for joining tables.

The WHERE clause includes a comparison predicate, which restricts the rows returned by
the query. The WHERE clause eliminates all rows from the result set where the comparison
predicate does not evaluate to True.

The GROUP BY clause projects rows having common values into a smaller set of rows.
GROUP BY is often used in conjunction with SQL aggregation functions or to eliminate
duplicate rows from a result set. The WHERE clause is applied before the GROUP BY
clause.

The HAVING clause includes a predicate used to filter rows resulting from the GROUP BY

clause. Because it acts on the results of the GROUP BY clause, aggregation functions can
be used in the HAVING clause predicate.

Chapter 30 Ian D Chivers

SQL background 381

The ORDER BY clause identifies which column[s] to use to sort the resulting data, and in
which direction to sort them (ascending or descending). Without an ORDER BY clause, the
order of rows returned by an SQL query is undefined.

The DISTINCT keyword[20] eliminates duplicate data.[21]

The following example of a SELECT query returns a list of expensive books. The query re-
trieves all rows from the Book table in which the price column contains a value greater than
100.00. The result is sorted in ascending order by title. The asterisk (*) in the select list in-

dicates that all columns of the Book table should be included in the result set.
SELECT *

FROM Book
WHERE price > 100.00
ORDER BY title;
The example below demonstrates a query of multiple tables, grouping, and aggregation, by

returning a list of books and the number of authors associated with each book.
SELECT Book.title AS Title,
count (*) AS Authors
FROM Book
JOIN Book author
ON Book.isbn = Book author.isbn

GROUP BY Book.title;

Example output might resemble the following:

Title Authors

SQL Examples and Guide 4

The Joy of SQL 1
An Introduction to SQL 2
Pitfalls of SQL 1

Under the precondition that isbn is the only common column name of the two tables and
that a column named title only exists in the Books table, one could re-write the query above
in the following form:
SELECT title,
count (*) AS Authors

FROM Book

NATURAL JOIN Book author

GROUP BY title;
However, many[quantify] vendors either do not support this approach, or require certain
column-naming conventions for natural joins to work effectively.

SQL includes operators and functions for calculating values on stored values. SQL allows
the use of expressions in the select list to project data, as in the following example, which
returns a list of books that cost more than 100.00 with an additional sales tax column con-

taining a sales tax figure calculated at 6% of the price.
SELECT isbn,

title,

price,

price * 0.06 AS sales tax
FROM Book
WHERE price > 100.00
ORDER BY title;

Ian D Chivers Chapter 30

382 SQL background

30.1.8 Subqueries

Queries can be nested so that the results of one query can be used in another query via a re-
lational operator or aggregation function. A nested query is also known as a subquery.
While joins and other table operations provide computationally superior (i.e. faster) alterna-
tives in many cases, the use of subqueries introduces a hierarchy in execution that can be
useful or necessary. In the following example, the aggregation function AVG receives as
input the result of a subquery:
SELECT isbn,
title,
price
FROM Book
WHERE price < (SELECT AVG(price) FROM Book)
ORDER BY title;
A subquery can use values from the outer query, in which case it is known as a correlated
subquery.
Since 1999 the SQL standard allows named subqueries called common table expressions
(named and designed after the IBM DB2 version 2 implementation; Oracle calls these
subquery factoring). CTEs can also be recursive by referring to themselves; the resulting
mechanism allows tree or graph traversals (when represented as relations), and more gener-
ally fixpoint computations.

30.1.9 Inline View

An Inline view is the use of referencing an SQL subquery in a FROM clause. Essentially,
the inline view is a subquery that can be selected from or joined to. Inline View functional-
ity allows the user to reference the subquery as a table. The inline view also is referred to
as a derived table or a subselect. Inline view functionality was introduced in Oracle 91.[22]

In the following example, the SQL statement involves a join from the initial Books table to
the Inline view "Sales". This inline view captures associated book sales information using
the ISBN to join to the Books table. As a result, the inline view provides the result set with
additional columns (the number of items sold and the company that sold the books):
Select b.isbn, b.title, b.price, sales.items sold, sales.com-
pany nm

from Book Db,

(select SUM(Items Sold) Items Sold, Company Nm, ISBN

from Book Sales

group by Company Nm, ISBN) sales

WHERE sales.isbn = b.isbn

30.1.10 Null or three-valued logic (3VL)

Main article: Null (SQL)

The concept of Null was introduced[by whom?] into SQL to handle missing information in
the relational model. The word NULL is a reserved keyword in SQL, used to identify the
Null special marker. Comparisons with Null, for instance equality (=) in WHERE clauses,
results in an Unknown truth value. In SELECT statements SQL returns only results for
which the WHERE clause returns a value of True; i.e., it excludes results with values of
False and also excludes those whose value is Unknown.

Along with True and False, the Unknown resulting from direct comparisons with Null thus
brings a fragment of three-valued logic to SQL. The truth tables SQL uses for AND, OR,
and NOT correspond to a common fragment of the Kleene and Lukasiewicz three-valued

Chapter 30 Ian D Chivers

SQL background 383

logic (which differ in their definition of implication, however SQL defines no such
operation).[23]

p AND ¢ p
True False Unknown
q True True False Unknown
False False False False
Unknown Unknown False Unknown
pOR q p
True False Unknown
q True True True True
False True False Unknown
Unknown True Unknown Unknown
P=q p
True False Unknown
q True True False Unknown
False False True Unknown
Unknown Unknown Unknown Unknown
q NOT ¢q
True False
False True
Unknown Unknown

There are however disputes about the semantic interpretation of Nulls in SQL because of its
treatment outside direct comparisons. As seen in the table above, direct equality compari-
sons between two NULLs in SQL (e.g. NULL = NULL) return a truth value of Unknown.
This is in line with the interpretation that Null does not have a value (and is not a member
of any data domain) but is rather a placeholder or "mark" for missing information. How-
ever, the principle that two Nulls aren't equal to each other is effectively violated in the
SQL specification for the UNION and INTERSECT operators, which do identify nulls with
each other.[24] Consequently, these set operations in SQL may produce results not repre-
senting sure information, unlike operations involving explicit comparisons with NULL (e.g.
those in a WHERE clause discussed above). In Codd's 1979 proposal (which was basically
adopted by SQL92) this semantic inconsistency is rationalized by arguing that removal of
duplicates in set operations happens "at a lower level of detail than equality testing in the

Ian D Chivers Chapter 30

384 SQL background

evaluation of retrieval operations".[23] However, computer-science professor Ron van der
Meyden concluded that "The inconsistencies in the SQL standard mean that it is not
possible to ascribe any intuitive logical semantics to the treatment of nulls in SQL."[24]

Additionally, because SQL operators return Unknown when comparing anything with Null
directly, SQL provides two Null-specific comparison predicates: IS NULL and IS NOT
NULL test whether data is or is not Null.[25] SQL does not explicitly support universal
quantification, and must work it out as a negated existential quantification.[26][27][28]
There is also the "<row value expression> IS DISTINCT FROM <row value expression>"
infixed comparison operator, which returns TRUE unless both operands are equal or both
are NULL. Likewise, IS NOT DISTINCT FROM is defined as "NOT (<row value expres-
sion> IS DISTINCT FROM <row value expression>)". SQL:1999 also introduced
BOOLEAN type variables, which according to the standard can also hold Unknown values.
In practice, a number of systems (e.g. PostgreSQL) implement the BOOLEAN Unknown as
a BOOLEAN NULL.

30.1.11 Data manipulation

The Data Manipulation Language (DML) is the subset of SQL used to add, update and de-
lete data:
INSERT adds rows (formally tuples) to an existing table,
e.g.:
INSERT INTO example
(fieldl, field2, field3)
VALUES
('test', 'N', NULL);
UPDATE modifies a set of existing table rows, e.g.:
UPDATE example
SET fieldl = 'updated value'
WHERE field2 = 'N';
DELETE removes existing rows from a table, e.g.:
DELETE FROM example
WHERE field2 = 'N';
MERGE is used to combine the data of multiple tables. It combines the INSERT and UP-
DATE elements. It is defined in the SQL:2003 standard; prior to that, some databases pro-
vided similar functionality via different syntax, sometimes called "upsert".
MERGE INTO table name USING table reference ON (condition)
WHEN MATCHED THEN

UPDATE SET columnl = wvaluel [, column2 = value2 ...]
WHEN NOT MATCHED THEN
INSERT (columnl [, column2 ...]) VALUES (valuel [, value2

-1)

30.1.12 Transaction controls
Transactions, if available, wrap DML operations:
START TRANSACTION (or BEGIN WORK, or BEGIN TRANSACTION, depending on

SQL dialect) marks the start of a database transaction, which either completes entirely or
not at all.

SAVE TRANSACTION (or SAVEPOINT) saves the state of the database at the current
point in transaction
CREATE TABLE tbl 1(id int);

INSERT INTO tbl 1(id) VALUES(1);

Chapter 30 Ian D Chivers

SQL background 385

INSERT INTO tbl 1(id) VALUES(Z2);
COMMIT;

UPDATE tbl 1 SET id=200 WHERE id=1;
SAVEPOINT id lupd;

UPDATE tbl 1 SET id=1000 WHERE id=2;
ROLLBACK to id lupd;

SELECT id from tbl 1;
COMMIT makes all data changes in a transaction permanent.
ROLLBACK discards all data changes since the last COMMIT or ROLLBACK, leaving the
data as it was prior to those changes. Once the COMMIT statement completes, the transac-
tion's changes cannot be rolled back.
COMMIT and ROLLBACK terminate the current transaction and release data locks. In the
absence of a START TRANSACTION or similar statement, the semantics of SQL are im-
plementation-dependent. The following example shows a classic transfer of funds transac-
tion, where money is removed from one account and added to another. If either the removal
or the addition fails, the entire transaction is rolled back.
START TRANSACTION;

UPDATE Account SET amount=amount-200 WHERE account num-
ber=1234;

UPDATE Account SET amount=amount+200 WHERE account num-
ber=2345;
IF ERRORS=0 COMMIT;
IF ERRORS<>0 ROLLBACK;

30.1.13 Data definition

The Data Definition Language (DDL) manages table and index structure. The most basic
items of DDL are the CREATE, ALTER, RENAME, DROP and TRUNCATE statements:

CREATE creates an object (a table, for example) in the database, e.g.:

CREATE TABLE example(

columnl INTEGER,

column2 VARCHAR(50),

column3 DATE NOT NULL,

PRIMARY KEY (columnl, column2)

);

ALTER modifies the structure of an existing object in various ways, for example, adding a
column to an existing table or a constraint, e.g.:

ALTER TABLE example ADD column4 NUMBER(3) NOT NULL;

TRUNCATE deletes all data from a table in a very fast way, deleting the data inside the ta-
ble and not the table itself. It usually implies a subsequent COMMIT operation, i.e., it can-
not be rolled back (data is not written to the logs for rollback later, unlike DELETE).

TRUNCATE TABLE example;

DROP deletes an object in the database, usually irretrievably, i.e., it cannot be rolled back,
e.g.

DROP TABLE example;

Ian D Chivers Chapter 30

386 SQL background

30.1.14 Data types

Each column in an SQL table declares the type(s) that column may contain. ANSI SQL in-
cludes the following data types.[29]

30.1.14.1 Character strings
CHARACTER(n) or CHAR(n):
fixed-width n-character string, padded with spaces as needed
CHARACTER VARYING(n) or VARCHAR(n):
variable-width string with a maximum size of n characters
NATIONAL CHARACTER(n) or NCHAR(n):
fixed width string supporting an international character set
NATIONAL CHARACTER VARYING(n) or NVARCHAR(n):
variable-width NCHAR string
30.1.14.2 Bit strings
BIT(n): an array of n bits
BIT VARYING(n): an array of up to n bits
30.1.14.3 Numbers
INTEGER, SMALLINT and BIGINT
FLOAT, REAL and DOUBLE PRECISION
NUMERIC(precision, scale) or DECIMAL(precision, scale)

For example, the number 123.45 has a precision of 5 and a scale of 2. The precision is a
positive integer that determines the number of significant digits in a particular radix (binary
or decimal). The scale is a non-negative integer. A scale of 0 indicates that the number is an
integer. For a decimal number with scale S, the exact numeric value is the integer value of
the significant digits divided by 10S.

SQL provides a function to round numerics or dates, called TRUNC (in Informix, DB2,
PostgreSQL, Oracle and MySQL) or ROUND (in Informix, SQLite, Sybase, Oracle,
PostgreSQL and Microsoft SQL Server)[30]

30.1.14.4 Temporal (date/time)
DATE: for date values (e.g. 2011-05-03)

TIME: for time values (e.g. 15:51:36). The granularity of the time value is usually a tick
(100 nanoseconds).

TIME WITH TIME ZONE or TIMETZ: the same as TIME, but including details about the
time zone in question.

TIMESTAMP: This is a DATE and a TIME put together in one variable (e.g. 2011-05-03
15:51:36).

TIMESTAMP WITH TIME ZONE or TIMESTAMPTZ: the same as TIMESTAMP, but in-
cluding details about the time zone in question.

SQL provides several functions for generating a date / time variable out of a date / time
string (TO_DATE, TO_TIME, TO TIMESTAMP), as well as for extracting the respective
members (seconds, for instance) of such variables. The current system date / time of the da-
tabase server can be called by using functions like NOW. The IBM Informix implementa-
tion provides the EXTEND and the FRACTION functions to increase the accuracy of time,
for systems requiring sub-second precision.[31]

Chapter 30 Ian D Chivers

SQL background 387

30.1.15 Data control

The Data Control Language (DCL) authorizes users to access and manipulate data. Its two
main statements are:

GRANT authorizes one or more users to perform an operation or a set of operations on an
object.
REVOKE eliminates a grant, which may be the default grant.
Example:
GRANT SELECT, UPDATE
ON example
TO some user, another user;
REVOKE SELECT, UPDATE
ON example
FROM some user, another user;

30.1.16 Procedural extensions

SQL is designed for a specific purpose: to query data contained in a relational database.
SQL is a set-based, declarative programming language, not an imperative programming lan-
guage like C or BASIC. However, extensions to Standard SQL add procedural program-
ming language functionality, such as control-of-flow constructs. These include:

Source Common name Full name

ANSI/ISO Standard SQL/PSM SQL/Persistent Stored Modules

Interbase / Firebird PSQL Procedural SQL

IBM DB2 SQL PL SQL Procedural Language
implements SQL/PSM)

IBM Informix SPL Stored Procedural Language

IBM Netezza NZPLSQL [3] (based on Postgres PL/pgSQL)

Microsoft / Sybase T-SQL Transact-SQL

Mimer SQL SQL/PSM SQL/Persistent Stored Module
(implements SQL/PSM)

MySQL SQL/PSM SQL/Persistent Stored Module
(implements SQL/PSM)

MonetDB SQL/PSM SQL/Persistent Stored Module
(implements SQL/PSM)

NuoDB SSP Starkey Stored Procedures

Oracle PL/SQL Procedural Language/SQL
(based on Ada)

PostgreSQL PL/pgSQL Procedural Language/PostgreSQL

(based on Oracle PL/SQL)

Ian D Chivers Chapter 30

388 SQL background

PostgreSQL PL/PSM Procedural Language/
Persistent Stored Modules
(implements SQL/PSM)

Sybase Watcom-SQL SQL Anywhere Watcom-SQL Dialect
Teradata SPL Stored Procedural Language
SAP SAP HANA SQL Script

In addition to the standard SQL/PSM extensions and proprietary SQL extensions, proce-
dural and object-oriented programmability is available on many SQL platforms via DBMS
integration with other languages. The SQL standard defines SQL/JRT extensions (SQL Rou-
tines and Types for the Java Programming Language) to support Java code in SQL data-
bases. SQL Server 2005 uses the SQLCLR (SQL Server Common Language Runtime) to
host managed .NET assemblies in the database, while prior versions of SQL Server were re-
stricted to unmanaged extended stored procedures primarily written in C. PostgreSQL lets
users write functions in a wide variety of languages — including Perl, Python, Tcl, and
C.[32]

30.1.17 Interoperability and standardization

SQL implementations are incompatible between vendors and do not necessarily completely
follow standards. In particular date and time syntax, string concatenation, NULLs, and com-
parison case sensitivity vary from vendor to vendor. A particular exception is PostgreSQL,
which strives for standards compliance.[33]

Popular implementations of SQL commonly omit support for basic features of Standard
SQL, such as the DATE or TIME data types. The most obvious such examples, and inci-
dentally the most popular commercial and proprietary SQL DBMSs, are Oracle (whose
DATE behaves as DATETIME,[34][35] and lacks a TIME type)[36] and MS SQL Server
(before the 2008 version). As a result, SQL code can rarely be ported between database
systems without modifications.

There are several reasons for this lack of portability between database systems:

e The complexity and size of the SQL standard means that most implementors do
not support the entire standard.

e The standard does not specify database behavior in several important areas (e.g.
indexes, file storage...), leaving implementations to decide how to behave.

e The SQL standard precisely specifies the syntax that a conforming database sys-
tem must implement. However, the standard's specification of the semantics of
language constructs is less well-defined, leading to ambiguity.

e Many database vendors have large existing customer bases; where the newer
version of the SQL standard conflicts with the prior behavior of the vendor's da-
tabase, the vendor may be unwilling to break backward compatibility.

e There is little commercial incentive for vendors to make it easier for users to
change database suppliers (see vendor lock-in).

e Users evaluating database software tend to place other factors such as perfor-
mance higher in their priorities than standards conformance.

SQL was adopted as a standard by the American National Standards Institute (ANSI) in
1986 as SQL-86[37] and the International Organization for Standardization (ISO) in 1987.
Nowadays the standard is subject to continuous improvement by the Joint Technical Com-

Chapter 30 Ian D Chivers

SQL background 389

mittee ISO/IEC JTC 1, Information technology, Subcommittee SC 32, Data management
and interchange, which affiliate to ISO as well as IEC. It is commonly denoted by the pat-
tern: ISO/IEC 9075-n:yyyy Part n: title, or, as a shortcut, ISO/IEC 9075.

ISO/IEC 9075 is complemented by ISO/IEC 13249: SQL Multimedia and Application Pack-
ages (SQL/MM), which defines SQL based interfaces and packages to widely spread appli-
cations like video, audio and spatial data.

Until 1996, the National Institute of Standards and Technology (NIST) data management
standards program certified SQL DBMS compliance with the SQL standard. Vendors now
self-certify the compliance of their products.[38]

The original standard declared that the official pronunciation for "SQL" was an initialism:
("es queue el").[11] Regardless, many English-speaking database professionals (including
Donald Chamberlin himself[39]) use the acronym-like pronunciation of "sequel"),[40] mir-
roring the language's pre-release development name of "SEQUEL".[14][15]

The SQL standard has gone through a number of revisions:

Year Name Alias Comments
1986 SQL-86 SQL-87 First formalized by ANSI.
1989 SQL-89 FIPS 127-1 Minor revision that added integrity constraints,

adopted as FIPS 127-1.

1992 SQL-92 SQL2, FIPS 127-2
Major revision (ISO 9075),
Entry Level SQL-92 adopted as FIPS 127-2.

1999 SQL:1999 SQL3 Added regular expression matching, recursive
queries (e.g. transitive closure), triggers, support for procedural and control-of-flow state-
ments, non-scalar types, and some object-oriented features (e.g. structured types). Support
for embedding SQL in Java (SQL/OLB) and vice versa (SQL/JRT).

2003 SQL:2003 SQL 2003 Introduced XML-related features (SQL/XML),
window functions, standardized sequences, and columns with auto-generated values (includ-
ing identity-columns).

2006 SQL:2006 SQL 2006 ISO/TEC 9075-14:2006 defines ways that SQL
can be used with XML. It defines ways of importing and storing XML data in an SQL data-
base, manipulating it within the database, and publishing both XML and conventional
SQL-data in XML form. In addition, it lets applications integrate queries into their SQL
code with XQuery, the XML Query Language published by the World Wide Web Consor-
tium (W3C), to concurrently access ordinary SQL-data and XML documents.[41]

2008 SQL:2008 SQL 2008 Legalizes ORDER BY outside cursor
definitions. Adds INSTEAD OF triggers
Adds the TRUNCATE statement.[42]

2011 SQL:2011
Interested parties may purchase SQL standards documents from ISO,[43] IEC or ANSI. A
draft of SQL:2008 is freely available as a zip archive.[44]

The SQL standard is divided into nine parts.

e ISO/IEC 9075-1:2011 Part 1: Framework (SQL/Framework). It provides logical
concepts.

Ian D Chivers Chapter 30

390

Chapter 30

SQL background

ISO/IEC 9075-2:2011 Part 2: Foundation (SQL/Foundation). It contains the most
central elements of the language and consists of both mandatory and optional
features.

ISO/IEC 9075-3:2008 Part 3: Call-Level Interface (SQL/CLI). It defines inter-
facing components (structures, procedures, variable bindings) that can be used to
execute SQL statements from applications written in Ada, C respectively C++,
COBOL, Fortran, MUMPS, Pascal or PL/I. (For Java see part 10.) SQL/CLI is
defined in such a way that SQL statements and SQL/CLI procedure calls are
treated as separate from the calling application's source code. Open Database
Connectivity is a well-known superset of SQL/CLI. This part of the standard
consists solely of mandatory features.

ISO/IEC 9075-4:2011 Part 4: Persistent Stored Modules (SQL/PSM) It standard-
izes procedural extensions for SQL, including flow of control, condition han-
dling, statement condition signals and resignals, cursors and local variables, and
assignment of expressions to variables and parameters. In addition, SQL/PSM
formalizes declaration and maintenance of persistent database language routines
(e.g., "stored procedures"). This part of the standard consists solely of optional
features.

ISO/IEC 9075-9:2008 Part 9: Management of External Data (SQL/MED). It pro-
vides extensions to SQL that define foreign-data wrappers and datalink types to
allow SQL to manage external data. External data is data that is accessible to,
but not managed by, an SQL-based DBMS. This part of the standard consists
solely of optional features.

ISO/IEC 9075-10:2008 Part 10: Object Language Bindings (SQL/OLB). It de-
fines the syntax and semantics of SQLJ, which is SQL embedded in Java (see
also part 3). The standard also describes mechanisms to ensure binary portability
of SQLIJ applications, and specifies various Java packages and their contained
classes. This part of the standard consists solely of optional features, as opposed
to SQL/OLB JDBC, which is not part of the SQL standard, which defines an
API.[citation needed]

ISO/IEC 9075-11:2011 Part 11: Information and Definition Schemas (SQL/Sche-
mata). It defines the Information Schema and Definition Schema, providing a
common set of tools to make SQL databases and objects self-describing. These
tools include the SQL object identifier, structure and integrity constraints, secu-
rity and authorization specifications, features and packages of ISO/IEC 9075,
support of features provided by SQL-based DBMS implementations, SQL-based
DBMS implementation information and sizing items, and the values supported
by the DBMS implementations.[45] This part of the standard contains both man-
datory and optional features.

ISO/IEC 9075-13:2008 Part 13: SQL Routines and Types Using the Java Pro-
gramming Language (SQL/JRT). It specifies the ability to invoke static Java
methods as routines from within SQL applications ('Java-in-the-database'). It also
calls for the ability to use Java classes as SQL structured user-defined types.
This part of the standard consists solely of optional features.

Ian D Chivers

SQL background 391

ISO/TEC 9075-14:2011 Part 14: XML-Related Specifications (SQL/XML). It
specifies SQL-based extensions for using XML in conjunction with SQL. The
XML data type is introduced, as well as several routines, functions, and
XML-to-SQL data type mappings to support manipulation and storage of XML
in an SQL database.[41] This part of the standard consists solely of optional fea-
tures.[citation needed]

ISO/IEC 9075 is complemented by ISO/IEC 13249 SQL Multimedia and Application Pack-
ages. This closely related but separate standard is developed by the same committee. It de-
fines interfaces and packages based on SQL. The aim is a unified access to typical database
applications like text, pictures, data mining or spatial data.

ISO/IEC 13249-1:2007 Part 1: Framework

ISO/IEC 13249-2:2003 Part 2: Full-Text

ISO/IEC 13249-3:2011 Part 3: Spatial

ISO/TEC 13249-5:2003 Part 5: Still image

ISO/TIEC 13249-6:2006 Part 6: Data mining

ISO/IEC 13249-8:xxxx Part 8: Metadata registries (MDR) (work in progress)

30.1.18 Alternatives

A distinction should be made between alternatives to SQL as a language, and alternatives to
the relational model itself. Below are proposed relational alternatives to the SQL language.
See navigational database and NoSQL for alternatives to the relational model.

.QL: object-oriented Datalog
4D Query Language (4D QL)
BQL: a superset that compiles down to SQL

Datalog: critics suggest that Datalog has two advantages over SQL: it has
cleaner semantics, which facilitates program understanding and maintenance, and
it is more expressive, in particular for recursive queries.[46]

HTSQL: URL based query method

IBM Business System 12 (IBM BS12): one of the first fully relational database
management systems, introduced in 1982

ISBL
JjOOQ: SQL implemented in Java as an internal domain-specific language

Java Persistence Query Language (JPQL): The query language used by the Java
Persistence API and Hibernate persistence library

LINQ: Runs SQL statements written like language constructs to query collec-
tions directly from inside .Net code.

Object Query Language

OttoQL

QBE (Query By Example) created by Moshe Zloof, IBM 1977
Quel introduced in 1974 by the U.C. Berkeley Ingres project.
Tutorial D

XQuery
Ian D Chivers Chapter 30

392 SQL background

30.1.19 Distributed SQL processing

Distributed Relational Database Architecture (DRDA) was designed by a work group within
IBM in the period 1988 to 1994. DRDA enables network connected relational databases to
cooperate to fulfill SQL requests.[47][48]

An interactive user or program can issue SQL statements to a local RDB and receive tables
of data and status indicators in reply from remote RDBs. SQL statements can also be com-
piled and stored in remote RDBs as packages and then invoked by package name. This is
important for the efficient operation of application programs that issue complex, high-fre-
quency queries. It is especially important when the tables to be accessed are located in
remote systems.

The messages, protocols, and structural components of DRDA are defined by the Distrib-
uted Data Management Architecture.

30.1.20 See also
The following are hot links from the Wikipedia pages.

e Comparison of object-relational database management systems
e Comparison of relational database management systems
e D (data language specification)

e D4 (programming language)

e Hierarchical model

e List of relational database management systems

e MUMPS

e NoSQL

e Transact-SQL

e Online analytical processing (OLAP)

e Online transaction processing (OLTP)

e Data warehouse

e relational data stream management system

e Star schema

e Snowflake schema

e DB2 SQL return codes

30.1.21 Notes

1. "Media Type registration for application/sql". Internet Assigned Numbers Authority. 10
April 2013. Retrieved 10 April 2013.

2. "The application/sql Media Type, RFC 6922". Internet Engineering Task Force. April
2013. p. 3. Retrieved 10 April 2013.

3. Paul, Ryan. "A guided tour of the Microsoft Command Shell". Ars Technica. Retrieved
10 April 2011.

4. Beaulieu, Alan (April 2009). Mary E Treseler, ed. Learning SQL (2nd ed.). Sebastapol,
CA, USA: O'Reilly. ISBN 978-0-596-52083-0.

5. "SQL, n.". Oxford English Dictionary. Oxford University Press. Retrieved 2014-11-27.
6. Encyclopedia Britannica. "SQL". Retrieved 2013-04-02.

Chapter 30 Ian D Chivers

SQL background 393

7. Oxford Dictionaries. "SQL".
8. IBM. "SQL Guide".
9. Microsoft. "Structured Query Language (SQL)".

10. Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM (Association for Computing Machinery) 13 (6):
377-87. doi:10.1145/362384.362685. Retrieved 2007-06-09.

11. Jump up to: a b Chapple, Mike. "SQL Fundamentals". Databases. About.com. Retrieved
2009-01-28.

12. "Structured Query Language (SQL)". International Business Machines. October 27,
2006. Retrieved 2007-06-10.

13. "ISO/IEC 9075-1:2008: Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework)".

14. Jump up to: a b ¢ Chamberlin, Donald D; Boyce, Raymond F (1974). "SEQUEL: A
Structured English Query Language" (PDF). Proceedings of the 1974 ACM SIGFIDET
Workshop on Data Description, Access and Control (Association for Computing Machin-
ery): 249—-64. Retrieved 2007-06-09.

15. Jump up to: a b Oppel, Andy (February 27, 2004). Databases Demystified. San Fran-
cisco, CA: McGraw-Hill Osborne Media. pp. 90—1. ISBN 0-07-146960-5.

16. "History of IBM, 1978". IBM Archives. IBM. Retrieved 2007-06-09.

17. ANSI/ISO/IEC International Standard (IS). Database Language SQL—Part 2: Founda-
tion (SQL/Foundation). 1999.

18. "DECODE". Docs.oracle.com. Retrieved 2013-06-14.

19. "Transact-SQL Reference". SQL Server Language Reference. SQL Server 2005 Books
Online. Microsoft. 2007-09-15. Retrieved 2007-06-17.

20. SAS 9.4 SQL Procedure User's Guide. SAS Institute. 2013. p. 248. ISBN
9781612905686. Retrieved 2015-10-21. "Although the UNIQUE argument is identical to
DISTINCT, it is not an ANSI standard."

21. Leon, Alexis; Leon, Mathews (1999). "Eliminating duplicates - SELECT using DIS-
TINCT". SQL: A Complete Reference. New Delhi: Tata McGraw-Hill Education (published
2008). p. 143. ISBN 9780074637081. Retrieved 2015-10-21. "[...] the keyword DISTINCT
[...] eliminates the duplicates from the result set."

22. "Derived Tables". ORACLE.

23. Jump up to: a b Hans-Joachim, K. (2003). "Null Values in Relational Databases and
Sure Information Answers". Semantics in Databases. Second International Workshop
Dagstuhl Castle, Germany, January 7-12, 2001. Revised Papers. Lecture Notes in Computer
Science 2582. pp. 119-138. doi:10.1007/3-540-36596-6 7. ISBN 978-3-540-00957-3.

24. Jump up to: a b Ron van der Meyden, "Logical approaches to incomplete information: a
survey" in Chomicki, Jan; Saake, Gunter (Eds.) Logics for Databases and Information Sys-
tems, Kluwer Academic Publishers ISBN 978-0-7923-8129-7, p. 344

25. ISO/IEC. ISO/IEC 9075-2:2003, "SQL/Foundation". ISO/IEC.

26. M. Negri, G. Pelagatti, L. Sbattella (1989) GUIDE Semantics and problems of universal
quantification in SQL

27. Fratarcangeli, Claudio (1991). Technique for universal quantification in SQL. ACM.org.

Ian D Chivers Chapter 30

394 SQL background

28. Kawash, Jalal (2004) Complex quantification in Structured Query Language (SQL): a
tutorial using relational calculus - Journal of Computers in Mathematics and Science Teach-
ing ISSN 0731-9258 Volume 23, Issue 2, 2004 AACE Norfolk, Virginia. Thefreelibrary.com

29. "Information Technology: Database Language SQL". CMU. (proposed revised text of
DIS 9075).

30. Arie Jones, Ryan K. Stephens, Ronald R. Plew, Alex Kriegel, Robert F. Garrett (2005),
SQL Functions Programmer's Reference. Wiley, 127 pages.

31.[1]
32. PostgreSQL contributors (2011). "PostgreSQL server programming". PostgreSQL 9.1 of-
ficial documentation. postgresql.org. Retrieved 2012-03-09.

33. PostgreSQL contributors (2012). "About PostgreSQL". PostgreSQL 9.1 official website.
PostgreSQL Global Development Group. Retrieved March 9, 2012. "PostgreSQL prides it-
self in standards compliance. Its SQL implementation strongly conforms to the
ANSI-SQL:2008 standard"

34. Lorentz, Diana; Roeser, Mary Beth; Abraham, Sundeep; Amor, Angela; Arora, Geeta;
Arora, Vikas; Ashdown, Lance; Baer, Hermann; Bellamkonda, Shrikanth (October 2010)
[1996]. "Basic Elements of Oracle SQL: Data Types". Oracle Database SQL Language Ref-
erence 11g Release 2 (11.2). Oracle Database Documentation Library. Redwood City, CA:
Oracle USA, Inc. Retrieved December 29, 2010. "For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second"

35. Lorentz, Diana; Roeser, Mary Beth; Abraham, Sundeep; Amor, Angela; Arora, Geeta,
Arora, Vikas; Ashdown, Lance; Baer, Hermann; Bellamkonda, Shrikanth (October 2010)
[1996]. "Basic Elements of Oracle SQL: Data Types". Oracle Database SQL Language Ref-
erence 11g Release 2 (11.2). Oracle Database Documentation Library. Redwood City, CA:
Oracle USA, Inc. Retrieved December 29, 2010. "The datetime data types are DATE..."

36. Lorentz, Diana; Roeser, Mary Beth; Abraham, Sundeep; Amor, Angela; Arora, Geeta;
Arora, Vikas; Ashdown, Lance; Baer, Hermann; Bellamkonda, Shrikanth (October 2010)
[1996]. "Basic Elements of Oracle SQL: Data Types". Oracle Database SQL Language Ref-
erence 11g Release 2 (11.2). Oracle Database Documentation Library. Redwood City, CA:
Oracle USA, Inc. Retrieved December 29, 2010. "Do not define columns with the following
SQL/DS and DB2 data types, because they have no corresponding Oracle data type:...
TIME"

37. "Finding Aid". X3H2 Records, 1978-95. American National Standards Institute.

38. Doll, Shelley (June 19, 2002). "Is SQL a Standard Anymore?". TechRepublic's
Builder.com. TechRepublic. Archived from the original on 2013-01-02. Retrieved
2010-01-07.

39. Gillespie, Patrick. "Pronouncing SQL: S-Q-L or Sequel?". Pronouncing SQL: S-Q-L or
Sequel?. Retrieved 12 February 2012.

40. Melton, Jim; Alan R Simon (1993). "1.2. What is SQL?". Understanding the New SQL.:
A Complete Guide. Morgan Kaufmann. p. 536. ISBN 1-55860-245-3. "SQL (correctly pro-
nounced "ess cue ell," instead of the somewhat common "sequel")..."

41. Jump up to: a b Wagner, Michael (2010). SQL/XML:2006 - Evaluierung der
Standardkonformitdt ausgewdhlter Datenbanksysteme. Diplomica Verlag. p. 100. ISBN
3-8366-9609-6.

42. "SQL:2008 now an approved ISO international standard". Sybase. July 2008.

Chapter 30 Ian D Chivers

SQL background 395

43. "ISO/IEC 9075-2:2011: Information technology -- Database languages -- SQL -- Part 2:
Foundation (SQL/Foundation)".

44. "SQL:2008 draft" (Zip). Whitemarsh Information Systems Corporation.

45. "ISO/IEC 9075-11:2008: Information and Definition Schemas (SQL/Schemata)". 2008.
p. L.

46. [2]

47. Reinsch, R. (1988). "Distributed database for SAA". IBM Systems Journal 27 (3):
362-389. doi:10.1147/sj.273.0362.

48. Distributed Relational Database Architecture Reference. IBM Corp. SC26-4651-0. 1990.
References

Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared Data Banks".
Communications of the ACM 13 (6): 377-87. doi:10.1145/362384.362685.

Discussion on alleged SQL flaws (C2 wiki)

C. J. Date with Hugh Darwen: A Guide to the SQL standard : a users guide to the standard
database language SQL, 4th ed., Addison Wesley, USA 1997, ISBN 978-0-201-96426-4

30.2 My Bibliography

These are some of the SQL books I've used, YMMV.

Cannan St., Otten G., SQL - The Standard Handbook, McGraw Hill.
This book covers ISO 9075: 1992(E).

Date C.J., Darwen H., A Guide to the SQL Standard, Third Edition, Addison Wesley.
Covers the 1992 standard.

Ian D Chivers Chapter 30

Example summary

31 Example summary

397

31.1 Introduction
In this chapter we provide summary details about the examples. The following table has the
details.

Chapter | Example Description Page
number | number number
2 Example 1 | Hello World 67

2 Example 2 | Simple text I/o using Python style strings 67

2 Example 3 | Simple numeric i/o 68

4 Example 1 | assignment and division 77

4 Example 2 | division with integers 78

4 Example 3 | time taken to reach the earth from the Sun. 78

4 Example 4 | converting from Fahrenheit to centigrade. 79

4 Example 5 | converting from Centigrade to Fahrenheit. 79

4 Example 6 | numbers getting too large - overflow 79

4 Example 7 | numbers getting too small - underflow 79

4 Example 8 | subtraction of two similar values 80

4 Example 9 | summation 80

5 Example 1 | array and conventional for loop syntax 87

5 Example 2 | using the len function to determine the size of array 88

5 Example 3 | reading in the array size 88

6 Example 1 | simple rainfall example 96

6 Example 2 | variant of one using len intrinsic function 96

6 Example 3 | setting the size at run time 96

6 Example 4 | two d array using numpy.zeros method 97

6 Example 5 | two d array using numpy.array() method 97

6 Example 6 | two d array and the numpy.sum() method 97

6 Example 7 | simple one d slicing 100
6 Example 8 | two d slicing 100
6 Example 9 | arithmetic and slicing 101

Ian D Chivers

Chapter 31

398 Example summary
6 Example 10 | Aggregate usage 102
6 Example 11 | Shape manipulation 102
6 Example 12 | Copies or views 103
7 Example 1 | initialisation, len and find methods 110
7 Example 2 | concatenation and split method 110
7 Example 3 | split variant 112
7 Example 4 | reading from an external file 112
1 bnpes T e femd cluling mand g
7 Example 6 s.i;lggilea:/zrpizr(l)tn of the previous example using the 117
7 Example 7 | the ASCII character set 118
7 Example 8 | Unicode characters 120
7 Example 9 | another unicode example 121
8 Example 1 | the if statement 130
8 Example 2 | the while statement 131
8 Example 3 | the for loop with arrays 131
8 Example 4 | the for loop with lists and enumerate 132
8 Example 5 | the for in statement 133
8 Example 6 | try and except 133
9 Example 1 | a bigger function 136
9 Example 2 | a swap function 137
9 Example 3 | another swap 137
9 Example 4 | yet another swap 138
9 Example 5 | recursive functions 138
9 Example 6 | simple factorial variant, reading the value in 138
9 Example 7 | testing out the maths functions 143
9 Example 8 | math module sin function 145
9 Example 9 | math module using numpy arrays 146
9 Example 10 | math module using a pi shortcut 146

Chapter 31

Ian D Chivers

Example summary 399
9 Example 11 | Using generators 148
9 Example 12 | Iterative 148
9 Example 13 | Recursive 148
9 Example 14 | generating prime numbers 149
9 Example 15 | list and lambda usage 149
9 Example 16 | functional example 150
9 Example 17 | functional example 151
9 Example 18 | functional example variant using the array module 152
9 Example 19 | functional variant using the numpy module 152
10 Example 1 | base shape class 154
10 Example 2 | variation using modules 155
10 Example 3 | a circle derived class 156
10 Example 4 | test program for the shape and circle classes 157
10 Example 5 | polymorphism and dynamic binding 158
10 Example 6 | data structuring using the Met Office data 159
11 Example 1 | reading from a file using substrings 162
11 Example 2 | reading the same file using the split() method 164
11 Example 3 | internet file read 165
11 Example 4 | variation on the internet file read where we save the file | 166
11 Example 5 | reading all of the station data files with timing 167
11 Example 6 | Writing to a set of files names generated within Python | 170
11 Example 7 | Copying a file and replacing missing values 170
11 Example 8 | creating an SQL file 170
11 Example 9 | Creating a csv file 171
11 Example 10 | CSV files and the csv module 172
11 Example 11 | CSV usage and data extraction 174
11 Example 12 | reading a met office file using the csv module 175
11 Example 13 | reading data using the genfromtxt method 176
11 Example 14 | Writing a CSV file 178

Ian D Chivers

Chapter 31

400 Example summary
1 Example 15 zirti;eéiﬁgnegarray as text file, element by element, 179
1 Bample 16 ement, with timing 180
1 Example 17 ziri;etiiigrleganay as binary file , whole array, 131
11 Example 18 | listing subdirectories 182
11 Example 19 | listing all Python files 182
13 Example 1 | Simple iterator usage 189
13 Example 2 | list type initialisation and simple for in statement 193
13 Example 3 | list type and various sequence methods 193
13 Example 4 | list assignment versus copy() method 194
13 Example 5 | simple list comprehension 195
13 Example 6 | more list comprehensions 196
13 Example 7 | more list comprehensions 196
13 Example 8 |even more list comprehensions 197
13 Example 9 | simple tuple usage 198
13 Example 10 | simple range usage 199
14 Example 1 | simple set usage 202
14 Example 2 | simple dictionary 203
15 Example 1 | simple dict usage 205
15 Example 2 | dict view usage 205
16 Example 1 | simple operator overloading 207
17 Example 1 | using getcontext() 210
17 Example 2 | values for the maths constants e and pi 212
17 Example 3 | summation using float and decimal 213
17 Example 4 | simple fraction usage 214
17 Example 5 | simple random usage 216
18 Example 1 | Database creation 222
18 Example 2 | Table creation 222

Chapter 31

Ian D Chivers

Example summary 401
18 Example 3 | loading the earthgk table 226
18 Example 4 | loading the regions table 227
18 Example 5 | loading the tsunami table 228
18 Example 6 | Querying the tables 228
18 Example 7 | creating the database 228
18 Example 8 | creating a table for one of the sites 229
18 Example 9 | loading data into the table 229
18 Example 10 | simple table query 230
18 Example 11 | computing averages 230
13 Example 12 Fl;r;(ﬁglg ;11:; :;ciertltfzsﬁ month and displaying the year, 231
13 Example 13 Fniﬁ)cgglg ;r}llcel :;iertlgsl‘{ months and displaying the year, 232
8 bl 14 Son el oengs laios sing he o
19 Example 1 | UK post codes 244
21 Example 1 | Serial solution 250
21 Example 2 | Multi-threaded solution 252
22 Example 1 | Simple multi-processing on a 6 core system 256
22 Example 2 | Simple variant for an 8 core system 258
23 Example 1 | simple module usage 270
24 Example 1 | Basic Pandas syntax 283
24 Example 2 | Calculating overall averages 284
24 Example 3 | Calculating minimum and maximum values 285
24 Example 4 | Using the groupby method 286
25 Example 1 | simple test program included with Tkinter distribution | 290
25 Example 2 | Hello world version 1 291
25 Example 3 | Hello world variant 1 292
25 Example 4 | Hello world variant 2 293
25 Example 5 | Hello world version 2 293

Ian D Chivers

Chapter 31

402 Example summary
25 Example 6 | Hello world version 3 294
25 Example 7 | simple button example 296
25 Example 8 | Button and message example 297
25 Example 9 | Button, message and entry example 298
25 Example 10 | Button, entry and text widget example 300
26 Example 1 | Simple trigonometric plot 307
26 Example 2 | Enhanced trigonometric plot 316
26 Example 3 | adding a legend, matplotlib defaults 317
26 Example 4 | adding a legend with manual positioning 318
26 Example 5 | Bar charts 319
26 Example 6 | bar chart with standard deviations 321
26 Example 7 | bar chart with 4 frequencies 322
26 Example 8 | bar chart with 10 frequencies 325
26 Example 9 | Mapping with Python 2.x and basemap 328
26 Example 10 | tsunami plot using cartopy 334
26 Example 11 | shifting the center of the map 341
26 Example 12 | mapping using UK postcodes 345
27 Example 1 | Python solution 351
27 Example 2 | Fortran solution 352
27 Example 3 | C++ solution 353
27 Example 4 | Java solution 355
28 Example 1 | testing the Nag library calls 359
28 Example 2 | testing the Python random number generators 360
28 Example 3 | Python native timing 360
28 Example 4 | Nag timing 362

Note that some of the examples are not Python programs.

31.2 Chapter notes
Chapter 6 has two variants for c0606.py. Here is the diff output.

diff c0606.py c0606 1.py

6c6, 8

Chapter 31

Ian D Chivers

Example summary 403

< x = np.array([[1,2,3] , [4,5,6] , [7,8,9]1)
> x = np.array([[1,2,3] ,

> [4/5/6] ’

> [7/8/9]])

1.e. there is a difference in the initalisation of the array.

diff cO0606.py c0606 2.py
6c6, 8
< x = np.array([[1,2,3] , [4,5,6]1 , [7,8,911)

> x = np.array([[1,2,3] , \

> [4,5,6] , \

> [7,8,911])

where we use explicit continuation markers.

Chapter 7 has an extra example based on a later Unicode standard.
Chapter 27 has Fortran, C++ and Java source files.

The Nag examples in chapter 28 need a Nag library licence.

Ian D Chivers Chapter 31

	Table of Contents
	1 Overview 13
	1.1 Aims 13
	1.2 History 13
	1.3 Use 14
	1.4 Assumptions 16
	1.5 Web resources 16
	1.6 Downloading and installing the software 16
	1.7 Windows 17
	1.7.1 Windows and anaconda 17
	1.7.1.1 Accessing Anaconda and Python on Windows 34

	1.7.2 Windows - cygwin python version 36
	1.7.3 Windows - Python download 41
	1.7.4 Windows and Microsoft Visual Studio 41
	1.7.4.1 Visual Studio Community Edition 2019 43

	1.7.5 Windows subsystem for Linux and Python install 44
	1.7.6 Windows Hyper-V manager 45

	1.8 Linux 47
	1.8.1 Python and openSuSe 47
	1.8.2 Python, openSuSe and an anaconda installation 47

	1.9 Intel Python for Windows, Linux and Mac 47
	1.10 Mapping with Python - basemap 47
	1.11 Mapping with Python - Cartopy 48
	1.12 Python on line documentation 49
	1.12.1 Published books and on line electronic manuscripts 61

	1.13 Download and installation summary 63
	1.13.1 Summary of systems setups 63

	1.14 Course Details 66
	1.15 Problems 66

	2 An Introduction to Python 67
	2.1 Example 1 - Hello World 67
	2.2 Example 2 - Simple text I/o using Python style strings 67
	2.3 Example 3 - Simple numeric i/o 68
	2.4 Running the examples using jupyter qtconsole 68
	2.5 Using spyder 71
	2.6 Problems 72

	3 Python base types, operators and expressions 73
	3.1 Built-in Types 73
	3.2 Python symbols 73
	3.2.1 Operators 73
	3.2.2 Delimiters and other characters 74

	3.3 Numeric Types — int, float, complex 74
	3.4 Iterator Types 75
	3.5 Sequence Types 75
	3.6 Text Sequence Type - str 75
	3.7 Binary sequence types - bytes, bytearray, memoryview 76
	3.8 Set types - set, frozenset 76
	3.9 Mapping types - dict 76
	3.10 Context manager types 76
	3.11 Other types 76
	3.12 Problems 76

	4 Arithmetic 77
	4.1 Example 1 - assignment and division 77
	4.2 Example 2 - division with integers 78
	4.3 Example 3 - time taken to reach the earth from the Sun. 78
	4.4 Example 4 - converting from Fahrenheit to centigrade. 79
	4.5 Example 5 - converting from Centigrade to Fahrenheit. 79
	4.6 Example 6 - numbers getting too large - overflow 79
	4.7 Example 7 - numbers getting too small - underflow 79
	4.8 Example 8 - subtraction of two similar values 80
	4.9 Example 9 - summation 80
	4.10 Absolute and relative errors 81
	4.11 Problems 81
	4.12 Bibliography 82

	5 Arrays using the array module 84
	5.1 Array methods 84
	5.2 Arrray size known at compile time 87
	5.2.1 Example 1 - array and conventional for loop syntax 87
	5.2.2 Example 2 - using the len function to determine the size of array 88

	5.3 Array size known at run time 88
	5.3.1 Example 3 - reading in the array size 88

	5.4 Summary 89
	5.5 Problems 89

	6 Arrays using the Numpy module 91
	6.1 Documentation 94
	6.2 Creating arrays 95
	6.3 Simple 1 and 2 d array examples 96
	6.3.1 Example 1 - simple rainfall example 96
	6.3.2 Example 2 - variant of one using len intrinsic function 96
	6.3.3 Example 3 - setting the size at run time 96
	6.3.4 Example 4 - two d array using numpy.zeros method 97
	6.3.5 Example 5 - two d array using numpy.array() method 97
	6.3.6 Example 6 - two d array and the numpy.sum() method 97

	6.4 Simple 1 and 2 d array slicing 100
	6.4.1 Example 7 - simple one d slicing 100
	6.4.2 Example 8 - two d slicing 100
	6.4.3 Example 9 - arithmetic and slicing 101

	6.5 Miscellaneous examples: aggregate, reshape, copies and views 102
	6.5.1 Example 10 - Aggregate usage 102
	6.5.2 Example 11 - Shape manipulation 102
	6.5.3 Example 12 - Copies or views 103

	6.6 Numpy documentation 104
	6.7 Problems 104

	7 Text in Python: Strings 105
	7.1 Introduction 105
	7.2 String Methods 105
	7.3 String example 1 - initialisation, len and find methods 110
	7.4 String example 2 - concatenation and split method 110
	7.5 String example 3 - split variant 112
	7.6 String example 4 - reading from an external file 112
	7.7 String example 5 - reading data from a file and calculating sum and average rainfall values 115
	7.8 String example 6 - simple variant of the previous example using the .format option 117
	7.9 Character data in Python 118
	7.10 String example 7 - the ASCII character set 118
	7.11 Unicode 119
	7.12 String example 8 - Unicode characters 120
	7.13 Example 9 - another unicode example 121
	7.14 Problems 123

	8 Control Structures - compound statements 125
	8.1 Compound statements 125
	8.2 The if statement 126
	8.3 The while statement 126
	8.4 The for statement 126
	8.5 The try statement 127
	8.6 The with statement 129
	8.7 The pass statement 130
	8.8 Example 1 - the if statement 130
	8.9 Example 2 - the while statement 131
	8.10 Example 3 - the for loop with arrays 131
	8.11 Example 4 - the for loop with lists and enumerate 132
	8.12 Example 5 - the for in statement 133
	8.13 Example 6 - try and except 133
	8.14 Additional material 133
	8.15 Problems 133
	8.16 Bibliography 135

	9 Functions 136
	9.1 Example 1 - a bigger function 136
	9.2 Example 2 - a swap function 137
	9.3 Example 3 - another swap 137
	9.4 Example 4 - yet another swap 138
	9.5 Example 5 - recursive functions 138
	9.6 Example 6 - simple factorial variant, reading the value in 138
	9.7 Intrinsic maths functions 139
	9.7.1 math — Mathematical functions 139
	9.7.1.1 Number-theoretic and representation functions 139
	9.7.1.2 Power and logarithmic functions 141
	9.7.1.3 Trigonometric functions 142
	9.7.1.4 Angular conversion 142
	9.7.1.5 Hyperbolic functions 142
	9.7.1.6 Special functions 142
	9.7.1.7 Constants 142

	9.8 Example 7 - testing out the maths functions 143
	9.9 Example 8 - math module sin function 145
	9.10 Example 9 - math module using numpy arrays 146
	9.11 Example 10 - math module using a pi shortcut 146
	9.12 Fibonacci implementations 147
	9.13 Example 11 - Using generators 148
	9.14 Example 12 - Iterative 148
	9.15 Example 13 - Recursive 148
	9.16 Functional programming in Python 148
	9.17 Example 14 - generating prime numbers 149
	9.18 Example 15 - list and lambda usage 149
	9.19 Example 16 - functional example 150
	9.20 Example 17 - functional example 151
	9.21 Example 18 - functional example variant using the array module 152
	9.22 Example 19 - functional variant using the numpy module 152
	9.23 Problems 153

	10 Object oriented programming and classes in Python 154
	10.1 Example 1 - base shape class 154
	10.2 Example 2 - variation using modules 155
	10.3 Example 3 - a circle derived class 156
	10.4 Example 4 - test program for the shape and circle classes 157
	10.5 Example 5 - polymorphism and dynamic binding 158
	10.6 Example 6 - data structuring using the Met Office data 159
	10.7 Problems 161

	11 IO 162
	11.1 Example 1 - reading from a file using substrings 162
	11.2 Example 2 - reading the same file using the split() method 164
	11.3 Example 3 - internet file read 165
	11.4 Example 4 - variation on the internet file read where we save the file 166
	11.5 Example 5 - reading all of the station data files with timing 167
	11.6 Example 6 - Writing to a set of files names generated within Python 170
	11.7 Example 7 - Copying a file and replacing missing values 170
	11.8 Example 8 - creating an SQL file 170
	11.9 Example 9 - Creating a csv file 171
	11.10 Example 10 - CSV files and the csv module 172
	11.11 Example 11 - CSV usage and data extraction 174
	11.12 Example 12 - reading a met office file using the csv module 175
	11.13 Example 13 - reading data using the genfromtxt method 176
	11.14 Example 14 - Writing a CSV file 178
	11.15 Example 15 - write large array as text file, element by element, with timing 179
	11.16 Example 16 - write large array as binary file , element by element, with timing 180
	11.17 Example 17 - write large array as binary file , whole array, with timing 181
	11.18 Example 18 - listing subdirectories 182
	11.19 Example 19 - listing all Python files 182
	11.20 Background i/o technical information 183
	11.21 Text I/O 183
	11.22 Binary I/O 183
	11.23 Raw I/O 183
	11.24 Performance 183
	11.24.1 Binary I/O 183
	11.24.2 Text I/O 184
	11.24.3 Multi-threading 184
	11.24.4 Reentrancy 184

	11.25 Problems 184

	12 An Introduction to Algorithms and the Big O notation 185
	12.1 Basic background 185
	12.1.1 Brief explanation 186

	12.2 Quicksort and insertion sort comparison 187
	12.3 Basic array and linked list performance 187
	12.4 Bibliography 187
	12.5 Problems 188

	13 Sequence types, Iterators and Lists 189
	13.1 Iterator types 189
	13.2 Example 1 - Simple iterator usage 189
	13.3 Sequence types 190
	13.3.1 Common Sequence Operations 190
	13.3.2 Immutable Sequence Types 191
	13.3.3 Mutable Sequence Types 191

	13.4 Lists 192
	13.5 Example 2 - list type initialisation and simple for in statement 193
	13.6 Example 3 - list type and various sequence methods 193
	13.7 Example 4 - list assignment versus copy() method 194
	13.8 List comprehensions 195
	13.9 Example 5 - simple list comprehension 195
	13.10 Example 6 - more list comprehensions 196
	13.11 Example 7 - more list comprehensions 196
	13.12 Example 8 - even more list comprehensions 197
	13.13 Tuples 197
	13.14 Example 9 - simple tuple usage 198
	13.15 Ranges 199
	13.16 Example 10 - simple range usage 199
	13.17 Problems 199

	14 Set types 200
	14.1 Set Types 200
	14.2 Example 1 - simple set usage 202
	14.3 Example 2 - simple dictionary 203
	14.4 Problems 204

	15 Mapping types 205
	15.1 Mapping types 205
	15.2 Example 1 - simple dict usage 205
	15.3 Example 2 - dict view usage 205
	15.4 Problems 206

	16 Operator overloading 207
	16.1 Introduction 207
	16.2 Example 1 - simple operator overloading 207
	16.3 Problems 208

	17 Decimals, fractions, random numbers 209
	17.1 Introduction 209
	17.2 The Decimal module 209
	17.3 Example 1 - using getcontext() 210
	17.4 Function availability 210
	17.5 Example 2 - values for the maths constants e and pi 212
	17.6 Example 3 - summation using float and decimal 213
	17.7 The Fraction module 214
	17.8 Example 4 - simple fraction usage 214
	17.9 The Random module 215
	17.10 Example 5 - simple random usage 216
	17.11 Problems 217

	18 Databases and sqlite 218
	18.1 Introduction to database management systems 218
	18.2 SQL based systems and Python 218
	18.2.1 Microsoft SQL Server 218
	18.2.2 DB API 2.0 Drivers 218

	18.3 SQLite 220
	18.4 On line documentation at W3 Schools 221
	18.5 SQL examples 221
	18.5.1 Example 1 - Database creation 222
	18.5.2 Example 2 - Table creation 222
	18.5.3 Example 3 - loading the earthqk table 226
	18.5.4 Example 4 - loading the regions table 227
	18.5.5 Example 5 - loading the tsunami table 228
	18.5.6 Example 6 - Querying the tables 228

	18.6 Using SQLite from the command line 228
	18.7 Creating a database of the Met Office data 228
	18.7.1 Example 7 - creating the database 228
	18.7.2 Example 8 - creating a table for one of the sites 229
	18.7.3 Example 9 - loading data into the table 229
	18.7.4 Example 10 - simple table query 230
	18.7.5 Example 11 - computing averages 230
	18.7.6 Example 12 - Finding the wettest month and displaying the year, month and rainfall 231
	18.7.7 Example 13 - Finding the wettest months and displaying the year, month and rainfall 232

	18.8 Example 14 - doing monthly average calculations using the genfromtxt example in the IO chapter 232
	18.9 Problems 234

	19 Regular expressions and pattern matching 243
	19.1 Metacharacters 244
	19.2 Example 1 - UK post codes 244
	19.3 Problems 245
	19.4 Bibliography 245

	20 Built in exceptions 247
	20.1 Exception hierarchy 247
	20.2 Problems 249

	21 Concurrent execution - threading 250
	21.1 Thread based parallelism - the threading package 250
	21.2 Example 1 - Serial solution 250
	21.3 Example 2 - Multi-threaded solution 252
	21.4 Problems 253

	22 Concurrent execution - multi processing 255
	22.1 Introduction 255
	22.2 Process based parallelism - the multiprocessing package 255
	22.3 Contexts and start methods¶ 255
	22.4 Example 1 - Simple multi-processing on a 6 core system 256
	22.5 Example 2 - Simple variant for an 8 core system 258
	22.6 Differences between the two version 260
	22.7 Sample runs 260
	22.8 Summary timing table 262
	22.9 Problems 263

	23 Modules 264
	23.1 Introduction 264
	23.2 Introduction to modules 270
	23.3 Example 1 - simple module usage 270
	23.4 More on Modules 271
	23.4.1 Note: 272

	23.5 Executing modules as scripts 272
	23.6 The Module Search Path 272
	23.6.1 Note: 272

	23.7 “Compiled” Python files 273
	23.8 Standard Modules 273
	23.9 The dir() Function 274
	23.10 Packages 276
	23.11 Importing * From a Package 277
	23.12 Intra-package References 278
	23.13 Packages in Multiple Directories 279
	23.14 Summary 279
	23.15 Problems 279

	24 SciPy and Pandas 280
	24.1 Introduction 280
	24.2 Documentation 280
	24.3 Tutorials 280
	24.4 Reference material 281
	24.5 Pandas 281
	24.5.1 Example 1 - Basic Pandas syntax 283
	24.5.2 Example 2 - Calculating overall averages 284
	24.5.3 Example 3 - Calculating minimum and maximum values 285
	24.5.4 Example 4 - Using the groupby method 286

	24.6 Summary 289
	24.7 Problems 289

	25 Windows programming in Python 290
	25.1 Introduction to Windows programming 290
	25.2 Tkinter 290
	25.3 Example 1 - simple test program included with Tkinter distribution 290
	25.4 Example 2 - Hello world version 1 291
	25.5 Example 3 - Hello world variant 1 292
	25.6 Example 4 - Hello world variant 2 293
	25.7 Example 5 - Hello world version 2 293
	25.8 Example 6 - Hello world version 3 294
	25.9 The remaining examples 296
	25.10 Example 7 - simple button example 296
	25.11 Example 8 - Button and message example 297
	25.12 Example 9 - Button, message and entry example 298
	25.13 Example 10 - Button, entry and text widget example 300
	25.14 Tkinter on line examples and resources 301
	25.15 Other options 302
	25.15.1 QT Creator 302

	25.16 Problems 303

	26 Graphics plotting in Python using matplotlib 304
	26.1 Graphics plotting with matplotlib 304
	26.2 The jupyter qtconsole on Windows 305
	26.3 Example 1 - Simple trigonometric plot 307
	26.4 Example 2 - Enhanced trigonometric plot 316
	26.5 Example 3 - adding a legend, matplotlib defaults 317
	26.6 Example 4 - adding a legend with manual positioning 318
	26.7 Example 5 - Bar charts 319
	26.8 Example 6 - bar chart with standard deviations 321
	26.9 Example 7 - bar chart with 4 frequencies 322
	26.10 Example 8 - bar chart with 10 frequencies 325
	26.11 Example 9 - Mapping with Python 2.x and basemap 328
	26.12 Mapping with Python 3 and Cartopy 333
	26.12.1 Example 10 - tsunami plot using cartopy 334
	26.12.2 Example 11 - shifting the center of the map 341
	26.12.3 Example 12 - mapping using UK postcodes 345

	26.13 Bibliography 349
	26.13.1 Python 349
	26.13.2 Cartopy 349
	26.13.3 Map data 349
	26.13.4 UNEP 349

	26.14 Problems 349

	27 Python performance versus other programming languages 351
	27.1 Introduction 351
	27.2 Example 1 - Python solution 351
	27.3 Example 2 - Fortran solution 352
	27.4 Example 3 - C++ solution 353
	27.5 Example 4 - Java solution 355
	27.6 Summary 356
	27.7 Problems 357

	28 Calling the Nag library from Python 358
	28.1 Introduction 358
	28.2 Example 1 - testing the Nag library calls 359
	28.3 Example 2 - testing the Python random number generators 360
	28.4 Example 3 - Python native timing 360
	28.5 Example 4 - Nag timing 362
	28.6 Problems 364

	29 Functional programming background 365
	29.1 Introduction 365
	29.2 Background 365
	29.3 History 366
	29.4 Concepts 367
	29.4.1 First-class and higher-order functions 367
	29.4.2 Pure functions 367
	29.4.3 Recursion 368
	29.4.4 Strict versus non-strict evaluation 368
	29.4.5 Type systems 369
	29.4.6 Referential Transparency 369
	29.4.7 Functional programming in non-functional languages 369

	29.5 Comparison to imperative programming 370
	29.5.1 Simulating state 370
	29.5.2 Efficiency issues 371
	29.5.3 Coding styles 371
	29.5.3.1 Version 1 – With Generators 371
	29.5.3.2 Version 2 – Iterative 372
	29.5.3.3 Version 3 – Recursive 372
	29.5.3.4 Haskell 372
	29.5.3.5 Erlang 372
	29.5.3.6 Elixir 373
	29.5.3.7 Lisp 373
	29.5.3.8 D 373
	29.5.3.9 R 374

	29.6 Use in industry 374
	29.7 In education 375

	30 SQL background 376
	30.1 SQL background 376
	30.1.1 History 377
	30.1.2 SQL online documentation 378
	30.1.3 Design 378
	30.1.4 Syntax 378
	30.1.5 Language elements 378
	30.1.6 Operators 379
	30.1.7 Queries 380
	30.1.8 Subqueries 382
	30.1.9 Inline View 382
	30.1.10 Null or three-valued logic (3VL) 382
	30.1.11 Data manipulation 384
	30.1.12 Transaction controls 384
	30.1.13 Data definition 385
	30.1.14 Data types 386
	30.1.14.1 Character strings 386
	30.1.14.2 Bit strings 386
	30.1.14.3 Numbers 386
	30.1.14.4 Temporal (date/time) 386

	30.1.15 Data control 387
	30.1.16 Procedural extensions 387
	30.1.17 Interoperability and standardization 388
	30.1.18 Alternatives 391
	30.1.19 Distributed SQL processing 392
	30.1.20 See also 392
	30.1.21 Notes 392

	30.2 My Bibliography 395

	31 Example summary 397
	31.1 Introduction 397
	31.2 Chapter notes 402

