
Compiler Support for the Fortran 2003 and 2008 Standards

Revision 6

Ian D Chivers & Jane Sleightholme

Ian Chivers: Rhymney Consulting, London.

Jane Sleightholme: FortranPlus, London.

ian@rhymneyconsulting.co.uk

jane@fortranplus.co.uk

Introduction

This is a repeating article in Fortran Forum. The first version appeared in Fortran Forum in April 2007. The basis for the

entries in the list of features was a report by John Reid. An electronic version can be found at:

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1648.pdf

If you are a compiler vendor and would like to be included in future versions of this table please email one of us with

details and they will be added to the table and published in Fortran Forum.

Acknowledgements for the original article

An email was sent to the J3 list asking for information about compiler support for the new features of the Fortran 2003

standard. The following people have contributed to the original article:

• Bill Long, Cray

• Joost VandeVondele

• Van Snyder

• Tobias Burnus and Brooks Moses, gfortran

• Andy Vaught, g95

• Robert Holmes, NAG

Thanks.

Revision 1

Two new compiler vendors were added. The information on the Intel compiler has been taken from the release notes

that came with release 10 of the compiler. The information on the IBM entry has been taken from their web site. Ian

Bush posted an article to comp.lang.fortran regarding this release (IBM XL Fortran Enterprise Edition for AIX, V11.1).

Thanks Ian. See

http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp?topic=/com.

ibm.xlf111.aix.doc/getstart/new_features.htm

for more information.

Intel and IBM were contacted to ask them to verify the information.

• Jim Xia of IBM corrected their entry, thanks Jim.

• Stan Whitlock of Intel corrected their entry, thanks Stan.

If there are any errors please notify us and we will correct them in the next version of this article.

Revision 2

Sun has been added and there have been a few corrections and updates to some of the other entries.

• Michael Ingrassia of Sun corrected their entry, thanks Michael.

ACM Fortran Forum, December 2010, 29, 3 26

Revision 3

The entries for Cray, gfortran (11 changes) , Intel (18 changes) and NAG (9 changes) have been updated.

Revision 4

We've had replies from Cray (Bill Long) , gfortran (Tobias Burnus), g95 (Andy Vaught), Intel (Stan Whitlock), Nag

(Malcolm Cohen) and Sun (Robert Corbett).

We've also added two entries suggested by Richard Maine. Here is the text of the message we received from Richard.

I just got the latest Fortran Forum and noticed two somewhat related Fortran 2003 features that I personally

think are important, but aren't reflected in your table of features. If convenient, they might be useful to add to

the table.

1. Allocatable scalars. To me, this is an important feature for object orientation, and in particular for

polymorphism. Basically, a polymorphic object has to be either a pointer or an allocatable (or a dummy

argument, which is a bit restrictive). In my experiments with polymorphism, the polymorphic objects pretty

much always naturally "wanted" to be allocatable. But the NAG compiler (which I was using at the time) didn't

yet support allocatable scalars. This meant that I either needed to make all the polymorphic objects pointers or

make them arrays (possibly of size 1). Neither of these alternatives was attractive at all. I found this a

significant enough shortcoming to keep me from using the polymorphic features. Thus, I'd think this would be

something people would want to know about a compiler if they planned to use polymorphism.

2. Allocatable character length. I think that allocatable character length is one of the biggest "sleeper" features

of f2003. It wasn't even on the list of f2003 requirements, and thus sometimes doesn't show up in lists of new

features. It just naturally arise from allocatable length parameters for parameterized derived types. It seemed

like one should allow the same thing for the one intrinsic type with a length type parameter. And lo, when it

was all put together, it seemed like this was finally a good way to do variable length strings in Fortran. It

integrates with the rest of the language immensely better than iso_varying_string has any hope of doing. In fact,

as I said, it integrates so well that it came about as a consequence of the integration of other features.

Allocatable-length character strings act like so many people intuitively think of character strings, unlike the

fixed-length character strings that we've had since f77.

Although this is related to allocatable scalars, in that you certainly want to be able to have allocatable character

strings that are scalar, it is also a separate feature in that you can have allocatable scalars without necessarily

allowing character length to be allocatable. It is also different in application, in that I see the main other usage

of allocatable scalars as being for polymorphism, whereas allocatable character strings are not much related to

polymorphism. It is also useful independent of parameterized derived types. I personally expect to see

allocatable character strings used far more than parameterized derived types, even though it was the

requirement for parameterized derived types that lead to allocatable character strings. I could almost see

allocatable character strings as becoming the "normal" way that most character string variables are done.

Thanks Richard.

We've also added entries for the Fortran 2008 standard. The entries are based on the following document:

ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1729.pdf

The last change are entries for compilers that support the Fortran 95 standard, and a list of compilers that are no longer

under development but did support Fortran 90, and finally compilers which are available but we have no information

on.

We have included the above for completeness. Given the widely differing levels of compiler standard conformance

today we wanted to make this information available to people choosing a compiler.

Thanks to everyone who has provided the data.

Revision 5

The IBM entry has been updated. See

http://www-01.ibm.com/common/ssi/rep_ca/3/897/ENUS210-103/ENUS210-103.PDF

27 ACM Fortran Forum, December 2010, 29, 3

The entry for gfortran has been updated. There is an entry for HP. The entry refers to the March 2010 release.

John Reid has also updated N1729.pdf and the latest version can be found at

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/

Revision 6

The gfortran entry has been updated. Here is part of an email we received from Tobius Burnus.

• Hi, as the development of GCC has almost reached the end of Stage 1, I thought I could already update the

F2003/F2008 conformance status for the December issue of ACM Fortran Forum. (Stage 1 allows for larger

changes; it is followed by Stage 3 (!) which allows only smaller bugfixes, regression fixes and

documentation updates.) Past experience suggests that 4.6.0 will be released next March as it won't be ready

before Christmas - and it takes a while to fix the new issues reported during the Christmas break. (It is really

a break as most developers are paid for GCC work (C, Ada, middle-end, target parts) and take off - only

gfortran is purely developed in the spare time.).....gfortran 4.6 will presumably also allow to use REAL(16)

(128 bit floating-point numbers) on x86, x86-64, and ia64 systems, which are emulated in software; so far

only the real kinds 4, 8 and 10 (80bit FP) were supported on those systems. (This library inclusion had to be

approved by the Free Software Foundation - but that problem seems to be mostly solved.)

For a complete list of what's new in 4.6 visit:

http://gcc.gnu.org/gcc-4.6/changes.html

Thanks Tobius.

ACM Fortran Forum, December 2010, 29, 3 28

Fortran 2003 and 2008 Features and Compiler Support: Revision 6

Y = Yes, N = No, P = Partial, U = Unconfirmed

Fortran 2003 Features Cray gfortran g95 HP IBM Intel NAG Sun

ISO TR 15580 IEEE Arithmetic Y N P Y Y Y Y Y

ISO TR 15581 Allocatable Enhancements Y Y Y Y Y Y Y Y

Data enhancements and object orientation Cray gfortran g95 HP IBM Intel NAG Sun

Parameterized derived types Y N N N Y N N N

Procedure pointers Y Y Y Y Y Y Y N

Finalization Y N N N Y N N N

Procedures bound by name to a type Y Y N N Y N Y N

The PASS attribute Y Y N Y Y Y Y N

Procedures bound to a type as operators Y Y N N Y P Y N

Type extension Y Y N N Y Y Y N

Overriding a type-bound procedure Y Y N N Y N Y N

Enumerations Y Y Y N Y Y Y N

ASSOCIATE construct Y P N N Y Y Y N

Polymorphic entities Y P, 1 N N Y Y Y N

SELECT TYPE construct Y P N N Y Y Y N

Deferred bindings and abstract types Y Y N N Y N Y N

Allocatable scalars, 12 Y Y N Y Y

Allocatable character length, 12 Y N N Y Y

Miscellaneous enhancements Cray gfortran g95 HP IBM Intel NAG Sun

Structure constructors Y Y Y N Y Y N N

The allocate statement Y Y P N Y Y Y N

Assignment to an allocatable array Y, 2 N N Y Y Y, 2 Y N

Transferring an allocation Y Y N N Y Y Y N

More control of access from a module Y Y N N Y Y Y Y

Renaming operators on the USE statement Y P Y N Y Y Y Y

Pointer assignment Y Y Y N Y N Y N

29 ACM Fortran Forum, December 2010, 29, 3

Fortran 2003 Features (Continued) Cray gfortran g95 HP IBM Intel NAG Sun

Pointer INTENT Y Y Y Y Y Y Y N

The VOLATILE attribute Y Y Y Y Y Y Y Y

The IMPORT statement Y Y Y Y Y Y Y Y

Intrinsic modules Y Y Y Y Y Y Y Y

Access to the computing environment Y Y Y Y Y Y Y Y

Support for international character sets P, 19 Y Y N P P, 19 P N

Lengths of names and statements Y Y ? Y Y Y Y Y

Binary, octal and hex constants Y Y Y Y Y Y Y Y

Array constructor syntax Y Y Y Y Y Y Y N

Specification and initialization expressions Y P Y Y Y P P N

Complex constants Y Y Y Y Y Y Y Y

Changes to intrinsic functions Y P, 9 Y Y Y P Y N

Controlling IEEE underflow Y N N Y Y Y N Y

Another IEEE class value Y N N Y Y Y N Y

Input/output enhancements Cray gfortran g95 HP IBM Intel NAG Sun

Derived type input/output Y N N N Y N N N

Asynchronous input/output Y Y,10 Y N Y Y Y Y

FLUSH statement Y Y Y N Y Y Y Y

IOMSG= specifier Y Y Y Y Y Y Y Y

Stream access input/output Y Y Y N Y Y Y Y

ROUND= specifier Y P, 30 P Y Y Y, 20 Y Y

DECIMAL= specifier Y Y Y Y Y Y, 21 Y Y

SIGN= specifier Y Y Y Y Y Y, 22 Y Y

Kind type parameters of integer specifiers Y N ? N Y Y Y N

Recursive input/output Y Y Y N Y Y Y Y

Intrinsic function for newline character Y Y Y Y Y Y Y N

Input and output of IEEE exceptional values Y Y Y Y Y Y Y Y

Comma after a P edit descriptor Y Y Y Y Y Y Y Y

ACM Fortran Forum, December 2010, 29, 3 30

Fortran 2003 Features (Continued) Cray gfortran g95 HP IBM Intel NAG Sun

Interoperability with C

Interoperability of intrinsic types Y Y Y Y Y Y Y Y

Interoperability with C pointers Y Y Y Y Y Y Y Y

Interoperability of derived types Y Y Y Y Y Y Y Y

Interoperability of variables Y Y Y Y Y Y Y Y

Interoperability of procedures Y Y Y Y Y Y Y Y

Interoperability of global data Y Y Y Y Y Y Y Y

Cray gfortran g95 HP IBM Intel NAG Sun

Notes

1 No unlimited polymorphic

2 Optional under flag

9 kind= of maxloc, minloc, shape missing

10 implemented as synchronous i/o

12 Suggested by Richard Maine

18 MOVE_ALLOC

19 SELECTED_CHAR_KIND only

20 plus RC,RD,RN,RP,RU,RZ

21 plus BLANK=,DELIM=,PAD=,SIZE=

22 plus DC,DP

30 only for output

31 ACM Fortran Forum, December 2010, 29, 3

Fortran 2003 and 2008 Features and Compiler Support: Revision 6

Y = Yes, N = No, P = Partial, U = Unconfirmed

Fortran 2008 Features
Cray gfortran g95 HP IBM Intel NAG Sun

Submodules Y N N N N N N

Coarrays Y P, 200 P N N N N N

Performance enhancements

do concurrent N N N N N N N

Contiguous attribute Y Y N N N N N

Simply contiguous arrays Y Y N N N N N

Data enhancements

Maximum rank N N N Y N N N

Long integers Y Y N Y Y, 100 Y Y

Allocatable components N N N N N N N

Implied-shape array N Y N N N N N

Pointer initialization N P N N N N N

Kind of a forall index N N N N N N N

Allocating a polymorphic variable Y P, 202 N N N N N

Accessing data objects Cray gfortran g95 HP IBM Intel NAG Sun

Accessing real and imaginary parts N N N N N N N

Pointer functions N N N N N N N

Input/Output

Finding a unit when opening a file N Y N N N N N

g0 edit descriptor Y Y N N N N N

Unlimited format item Y Y N N N N N

Recursive input/output Y Y N N Y Y Y

Execution control Cray gfortran g95 HP IBM Intel NAG Sun

The block construct Y Y N N N N N

Exit statement N Y N N N N N

Stop code Y Y N N P, 104 N N

ACM Fortran Forum, December 2010, 29, 3 32

Fortran 2008 Features (Continued)
Cray gfortran g95 HP IBM Intel NAG Sun

Intrinsic procedures for bit processsing

Bit sequence comparison Y Y N N N N N

Combined shifting Y Y N N P N N

Counting bits Y Y N Y Y N N

Masking bits Y Y N N N N N

Shifting bits Y Y N N P N N

Merging bits N Y N N N N N

Bit transformational functions N Y N N N N N

Intrinsic procedures and modules Cray gfortran g95 HP IBM Intel NAG Sun

Storage size N N N N N N N

Selecting a real kind Y N N N N N N

Hyperbolic intrinsic functions N Y N P Y N N

Bessel functions N Y N N N N N

Arc tangent function Y Y N N N N N

Error and gamma functions P Y N P P N N

Euclidean vector norms N Y N N N N N

Parity N Y N N N N Y

Execute command line N Y N N N N N

Location of max or min value in an array Y N N N N N N

Find location in an array Y N N N N N N

Constants Y P, 203 N N N N N

Module procedures N N N N N N N

Programs and procedures

Empty contains section Y Y N N N N N

Internal procedure as an actual argument N Y N N Y N N

Generic resolution by pointer or allocatable

attribute
N N N N N N N

Null pointer as a missing dummy argument N Y N N N N N

Elemental procedures that are not pure N Y N N N N N

Entry statement becomes obsolescent Y Y N N N N N

33 ACM Fortran Forum, December 2010, 29, 3

Notes

100 INTEGER (KIND=8)

104 not STOP <init expr>

200 Only for a single image

202 Only MOLD=

203 int and real, and coarray

Fortran 95 and TR 15581

The following companies also make Fortran compilers and we include details of their degree of standard support.

Absoft Salford Lahey Path PGI AMD x86

ftn95 Scale open64

Silverfrost

Windows

Fortran 95 Yes Yes Yes Yes NA

TR 15581 No No Yes Yes NA

Linux

Fortran 95 Yes NA Yes Yes Yes Yes

TR 15581 No NA Yes Yes Yes No

Others

Apogee No longer available

Compaq No longer available

Fortran Company F

Fujitsu No information at this time

NA Software No longer available

NEC No information at this time

ACM Fortran Forum, December 2010, 29, 3 34

	article01.pdf
	Introduction
	Terminology
	Organization
	References
	Definitions
	Requirements
	Predicates, Preconditions, & Procedures
	Predicate [LC]: Introducing N into S introduces a local conflict with N
	Predicate [SH]: Named Entity N in S cannot be shadowed in S
	Predicate [IC]: Introducing N into S introduces conflicts into an importing scope S
	Predicate [SK]: Introducing N into S skews references in S
	Precondition [IN]: Introducing N into S must be legal and name binding-preserving
	Precondition [SI]: Non-generic Internal Subprogram S must have only internal references
	Predicate [PR]: Private Entities in D are referenced outside D
	Procedure [Ou]: Determine Named Entities in M-D referenced by D
	Predicate [OU]: D references Named Entities in M outside D
	Precondition [PP]: D must partition private references in M
	Procedure [Pr]: Construct a Set of Pairs from Use Statement U
	Procedure [Us]: Construct a Use Statement for Module M from Sets of Pairs X and Y
	Precondition [RN]: Module M must not rename entities D from Module M
	Procedure [Rn]: Replace References in C according to X

	Refactorings
	Add Empty Internal Subroutine
	Safe-Delete Non-Generic Internal Subprogram
	Rename
	Introduce Implicit None
	Permute Subroutine Parameters
	Add Use of Named Entities E in Module M to Module M [Prerequisite]
	Move Module Entities

